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SUMMARY
The hypothalamus, an ‘‘ancient’’ subcortical brain structure, maintains physiological homeostasis and con-
trols native behaviors. The evolution of homeostatic regulation and behavioral control in mammals may rely
on adaptable neuronal identity establishment but conserved neural patterning mechanisms during neurode-
velopment. Here, we combined single-cell, single-nucleus, and spatial transcriptomic datasets to map the
spatial patterning of diverse progenitor domains and reconstruct their neurogenic lineages in the developing
human and mouse hypothalamus. While the regional organizers orchestrating neural patterning are
conserved between primates and rodents, we identified a human-enriched neuronal subtype and found a
substantial increase in neuromodulatory gene expression among human neurons. Furthermore, cross-spe-
cies comparison demonstrated a potential redistribution of two neuroendocrine neuronal subtypes and a
shift in inter-transmitter and transmitter-peptide coupling within hypothalamic dopamine neurons. Together,
our study lays a critical foundation for understanding cellular development and evolution of the mammalian
hypothalamus.
INTRODUCTION

The mammalian brain develops in an intricately orchestrated

sequence of stages, including neural patterning, neurogenesis,

neuritogenesis, synaptogenesis, and gliogenesis. While the

anatomic and cellular architecture of fully developed brains is

generally conserved across different mammalian species, there

exist numerous species-specific differences between rodent
D
All rights are reserved, including those
and primate brains, such as variation in organ size and cellular

complexity. Recently, single-cell comparative genomic studies

have been conducted to elucidate the species difference in

molecular design and cellular hierarchy of the developing

neocortex.1–4 However, the interspecies divergence of subcor-

tical brain development remains largely enigmatic.

The hypothalamus is a structurally and functionally complex

brain region that controls organismal homeostasis by mediating
evelopmental Cell 60, 1–15, July 7, 2025 ª 2025 Elsevier Inc. 1
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endocrine, autonomic, and behavioral inputs/outputs, repre-

senting an ideal subcortical structure with which to address

questions about cellular evolution in rodents and primates. In

the hypothalamus, diverse neuronal subtypes are frequently

featured by different neuropeptides and neurotransmitters.5,6

Their identity, number, location, and connectivity are established

during embryonic development, which lays the structural

foundation for various hypothalamic functions.6–9 Across the

mouse developmental continuum, hypothalamic radial glial cells

(RGCs), intermediate progenitor cells (IPCs), and neuronal pre-

cursors adopt a stepwise diversification strategy and precisely

controlled lineage programs to generate neuronal diversity.10,11

Developmental abnormalities of specific neural progenitors,

neuronal subtypes, or circuits in the hypothalamus lead to meta-

bolic disorders, reproductive defects, sleep disorders, growth

retardation, anxiety, depression, and autism.8,12 Although the

hypothalamus has traditionally been considered as an ‘‘ancient’’

and evolutionarily conserved region of the mammalian brain,5,13

bulk transcriptomic analysis recently implied a potential diver-

gence between adult human and mouse hypothalamus.14 This

raises the question regarding the extent of conservation and

divergence in the developmental programming of the mamma-

lian hypothalamus.

Precise spatiotemporal regulation of gene expression is crit-

ical for all aspects of mammalian brain development, evolution,

and function. Given the extraordinary progenitor and neuronal

diversity in the subcortical brain structures, single-cell and

spatially resolved transcriptomics have emerged as effective

tools in understanding cellular development and evolution of

the hypothalamus.10,15,16 Here, we performed single-cell and

single-nucleus RNA sequencing of the developing primate hypo-

thalamus, found conservation in the spatial patterning of hypo-

thalamic progenitor domains, computationally reconstructed

various neuronal sublineages, and revealed unique features in

human hypothalamic neurons compared with mice. We have de-

signed an interactive platform that enables data exploration,

which is accessible at https://hypoatlas.org (Video S1).

RESULTS

Conserved cell types with divergent molecular features
between humans and mice
To better understand the cellular repertoire and developmental

trajectory of the mammalian hypothalamus, we performed sin-

gle-cell transcriptomic profiling of the human and macaque hy-

pothalamus spanning different developmental stages (Figures

1A, 1B, and S1A), incorporating recent datasets from developing

mouse studies.10,17 Human samples were collected from 13 fe-

tuses ranging from 5 to 20 weeks post-conception (PCW5–20),

while macaque fetal specimens were dissected at three devel-

opmental time points (PCW5, 8, and 11). After stringent quality

control, batch correction, and data integration, we collected

351,742 hypothalamic cells across three species and multiple

stages during development, including 195,166 cells from hu-

mans (Figures 1C and S1B–S1H). Clustering analysis of the inte-

grated and species-specific datasets using the Louvain algo-

rithm identified 14 principal cell types, each characterized by

specific expression of well-known marker genes (Figures 1C,

S1I–S1K, S2A, and S2B; Table S1A): 3 neural progenitor types
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(RGCs and IPCs), 2 major neuronal types (glutamatergic and

GABAergic neurons), 6 glial cell types (astrocytes, oligodendro-

cyte precursor cells, oligodendrocytes, ependymocytes, tany-

cytes, and microglia), and 3 non-neural cell types (vascular lep-

tomeningeal cells, endothelial cells, and blood cells). We further

validated the consistency and reliability of our results using pub-

licly available developing and adult hypothalamus datasets

(Figures S2C–S2J; Table S1A). Sex differences in these cell

types were largely minimal at prenatal and perinatal stages

(Figures S2K–S2O; Table S1B).

To examine cellular homology among different species, we

measured transcriptomic similarity across species using two in-

dependent methods and found a robust cross-species conser-

vation, irrespective of sex (Figures 1D and S3A–S3C). Among

these homologous cell types, we found 1,163 cellular markers

with cross-species conservation and further identified 1,685

cell-type-specific signature genes enriched in humans, 2,128 in

macaques, and 733 in the mouse hypothalamus (Figures 1E

and S3D; Table S1C; STAR Methods). To gain deeper insights

into the molecular basis of hypothalamus evolution, we analyzed

340 previously identified primate-specific genes (PSGs)18,19 and

revealed the expression of 19 genes with neural cell-type spec-

ificity (Figure 1F; Table S1D). Notably, many of the identified

PSGs were reported as risk factors for hypothalamus-related

disorders. For instance, neural progenitor-specific ZNF519 has

been shown to associate with microcephaly and lissencephaly,

while genetic defects in RABL2A, enriched in glutamatergic neu-

rons, might lead to male infertility, growth retardation, and

excessive weight gain in humans.20,21

Across neural cell types, we applied multiple trajectory infer-

ence methods to confirm a conserved differentiation pathway

from RGCs to neurons and glial cells (Figures S4A and S4B).

We also found that human hypothalamic neural progenitors em-

ployed a similar stepwise diversifying model for neurogenesis as

observed in mice,10 wherein RGCs generate two independent

IPC subpopulations, and one subtype of them has the potential

to differentiate into both glutamatergic and GABAergic neurons

(Figure S4A). This finding suggests a common ontogenetic rule

for neuronal lineage progression in the human and mouse

hypothalamus.

As the primed expression of sublineage-specificmarker genes

predicted the fates of undifferentiated RGCs,22 we assessed the

timing of these neural progenitors entering the primitive state of

lineage differentiation. We found that the priming of hypothalam-

ic gliogenesis, including the generation of oligodendrocyte pre-

cursors (PDGFRA+), astrocytes (AQP4+), and ependymocytes

(FOXJ1+), occurred earlier in humans than in mice by aligning

the neurodevelopmental time scales across species (Figures

S4C–S4E). Cell composition analysis indeed showed that human

glial cells emerged during the early-to-middle fetal stage, but

mouse gliogenesis did not reach a detectable level until perinatal

stage (Figure 1G). We next established correspondence be-

tween human and mouse developmental ages using a transcrip-

tome age indexing approach (Figures S5A and S5B; STAR

Methods) and found that the expression of cellular components

involved in synapse formation was higher in humans than in mice

at stage 3 (Figures 1H and S5C–S5G). These data suggest the

temporal progression of gliogenesis and synaptogenesis, rather

than neurogenesis, displays some degree of heterochrony

https://hypoatlas.org
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Figure 1. Conserved cell classeswith diver-

gent features in the developing human hy-

pothalamus

(A) An overview of developmental time points

sampled for the human andmouse hypothalamus.

E, embryonic; P, postnatal; PCW, weeks post-

conception; My, million years.

(B) Schematic diagram showing a coronal section

of human brains at PCW16, with hypothalamus

highlighted in blue.

(C) UMAP visualization of a total of 351,742 cells

collected from the developing human (Hsa), ma-

caque (Mcf), and mouse (Mmu) hypothalamus.

RGC, radial glial cells; IPC, intermediate progeni-

tor cells; AS, astrocytes; OPC, oligodendrocyte

precursor cells; OD, oligodendrocytes; TC, tany-

cytes; EC, ependymal cells; GABA, GABAergic

neurons; GLU, glutamatergic neurons; BC, blood

cells; EnC, endothelial cells; VLMC, vascular and

leptomeningeal cells.

(D) Pearson correlation of all cell types in different

species. Sp, species; Cc, cell classes. (E) Heat-

maps showing the conserved and species-spe-

cific molecular features in each cell type.

(F) Primate-specific genes (PSG) enriched in each

neural cell type.

(G) Cell ratio dynamics of glia, neurons, and pro-

genitors in the human and mouse hypothalamus.

(H) Module score dynamics showing the devel-

opmental changes in synaptic, presynaptic (PreS),

and postsynaptic (PostS) gene expression.
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between humans and mice, supporting that gliogenesis coordi-

nates with the establishment of synapse.23

Conserved spatial patterning of neural progenitors
The hypothalamic primordium undergoes anteroposterior (AP)

and dorsoventral (DV) regionalization to establish diverse pro-

genitor domains, which are arranged into preoptic, anterior, tu-

beral, and mammillary zones (Figure 2A).24,25 However, the mo-

lecular patterning of various progenitor domains in the human

hypothalamus is still unclear. We thereby isolated RGCs at

stages 1 and 2 and preserved both hypothalamic and prethala-

mic progenitors with spatial identities for subsequent analyses

(Figure S6), given the critical role of prethalamus in hypothalamic

patterning.26 We identified 9 hypothalamic and 3 prethalamic

progenitor domains (Figures 2B, S6A, and S7A), using the puta-

tive region-specific markers (e.g., PAX6, NKX2-1, TBX3, SIX6,

and BARHL2) and a spatiotemporally resolved transcriptomic

atlas of mouse organogenesis generated by spatial enhanced

resolution omics-sequencing (Stereo-seq).27 Compared with
Deve
recent studies,16,28 our work provides a

more complete and comprehensivemap-

ping of hypothalamic progenitor domains

(Figures S7B–S7F). The majority of these

domains were also identified in macaque

datasets (Figures S7G–S7J). These do-

mains were characterized by different

molecular codes (Figure 2C; Table S1E),

which emerged before the onset of neu-

rogenesis and constantly defined distinct
domains throughout development (Figures S7K–S7M). We

further found that each domain was demarcated by a set of

evolutionarily conserved transcription factors (TFs) that may

dictate progenitor identities (Figures 2D and S8A–S8C). Impor-

tantly, forkhead factors FOXG1, FOXD1, FOXD2, FOXB1,

FOXA1, and FOXA2 were expressed in distinct domains in a

segment-specific pattern (Figures 2E–2G and S8D–S8F), sup-

porting previous studies demonstrating the critical role of

Foxd1 and Foxb1 in specifying neurons for anterior nucleus

and mammillary body.29,30 The zonal segmentation along the

AP axis by FOX gene family was shared between humans and

mice (Figure 2E).

Notably, brain morphogenesis is controlled by both intrinsic

factors and extrinsic morphogens. While Spemann’s organizer

establishes the identity of neural plate, secondary organizers

emerge from discrete domains and release diffusible signaling

factors to refine regional patterning (Figure 2H).31 In the pretha-

lamic and hypothalamic primordium, diverse progenitor domains

expressed different morphogen codes consisting of Sonic
lopmental Cell 60, 1–15, July 7, 2025 3



A B C

D

E

F

G

H I

J K

L

M

Figure 2. Spatial patterning of progenitor domains shared between humans and mice

(A) A diagram of classical segmentation of early developing hypothalamus into preoptic (P), anterior (A), tuberal (T), and mammillary (M) zones along the AP axis.

PTh, prethalamus; MB, midbrain; SM, supramammillary zones.

(B) UMAP projection colored by diverse progenitor domains with distinct spatial code expression.

(C) Marker gene expression for each hypothalamic and prethalamic progenitor domains.

(D) Conserved TFs expressed in each human and mouse hypothalamic progenitor domains.

(E) Conserved expression of FOX gene family in different human and mouse hypothalamic zones.

(F) Spatial visualization of FOX gene expression patterns in E12.5 sagittal mouse brain sections.

(G) A summary of the segmentation of hypothalamic progenitor domains by FOX family genes.

(H) Schematic of the well-established secondary organizers: anterior neural ridge (ANR), zona limitans intrathalamica (ZLI), and isthmic organizer (ISO).

(I) Spatial visualization of morphogens in E12.5 mouse brain.

(J) Gene expression score (left) and profile (right) of morphogens including SHH, WNT, FGF, and RSPO families in diverse progenitor domains. Morph, mor-

phogens; H, human; M, mouse.

(K) Spatial expression pattern of Shh, Fgf10, and Rspo2.

(L) Graphical summary of tertiary organizers in the developing hypothalamus.

(M) Sample images showing the spatial expression of SHH and RSPO2 mRNA in a sagittal view of PCW6 human fetal brain. Scale bar, 1 mm.

ll
Resource

4 Developmental Cell 60, 1–15, July 7, 2025

Please cite this article in press as: Chen et al., Transcriptional conservation and evolutionary divergence of cell types across mammalian hypothalamus
development, Developmental Cell (2025), https://doi.org/10.1016/j.devcel.2025.03.009



ll
Resource

Please cite this article in press as: Chen et al., Transcriptional conservation and evolutionary divergence of cell types across mammalian hypothalamus
development, Developmental Cell (2025), https://doi.org/10.1016/j.devcel.2025.03.009
Hedgehog (SHH), Wingless/Int-1 (WNT) family, fibroblast growth

factors (FGFs), and R-spondin (RSPO) family (Figures 2I and 2J).

Among the 12 progenitor domains, we identified PTh3, pT2, and

pSM1/2 as tertiary organizers with differentially enriched expres-

sion of morphogens (Figures 2J–2L). Specifically, a subset of

WNTs (e.g., WNT7B, WNT2B, and WNT3A) and RSPOs (e.g.,

RSPO3 and RSPO1) defined anterodorsalizing organizer in early

developing hypothalamus, whereas other WNT signals (WNT8B,

WNT5A, and RSPO2) coordinated with SHH to establish caudal-

izing organizer. In the hypothalamic floor plate, FGF genes

(FGF18, FGF10, and FGF8) were restricted in pT2 domain and

mutually exclusive with SHH (Figure 2L). While Stereo-seq data

demonstrated the spatial expression of morphogens in mice

(Figure 2K), we further performed in situ hybridization to validate

the expression of SHH, FGF10, and RSPO2 in human brains at

PCW6. Our human data confirmed the overlapping expression

of SHH and RSPO2 in pSM1/2 and the specific enrichment of

FGF10 in pT2 (Figures 2M and S8G). These results suggest

that human and mouse brains share the common tertiary orga-

nizers and patterning mechanisms to induce TF expression

and thereby establish the spatial identities of diverse hypotha-

lamic progenitor domains.

Inference of neuronal sublineages for each progenitor
domain
Distinct progenitor domains in the early developing hypothala-

mus presumably contribute to the extensive neuronal diversity

through multiple sublineages.32 However, current pseudotem-

poral ordering algorithms lack the power to simultaneously

reconstruct individual sublineages spanning progenitors and

their intermediate and differentiated states.33,34 Here, we devel-

oped a computational strategy to infer the cellular fate transition

of each progenitor domain by linking different cell types along

the lineage hierarchy (Figures 3A and 3B; STAR Methods). We

categorized IPCs and neurons into 14 and 22 subgroups,

respectively (Figure 3B), and validated the strength and consis-

tency of our results using publicly available datasets (Figures

S9 and S10; Tables S1F and S1G). Importantly, we found that

signature genemodules for each progenitor domain were poten-

tially transmitted from progenitors to progeny (Figure S11A). We

then reconstructed a neuronal lineage map by calculating the

RGC-IPC and IPC-neuron relationships (Figures 3A, S11B, and

S11C). To further demonstrate the robustness of our computa-

tional approach, we applied it to previously published single-

cell datasets and were able to successfully reconstruct the

cellular lineage (Figures S11D–S11H).

Next, we adapted Shannon’s information theory for inferring

lineage diversification spectrum with TF codes, which could

define discrete progenitor domains and their progeny.35,36 Our

analysis indicated that T-zone (pT1, pT2, and their progeny)

and M-zone (pM, pSM1, pSM2, and their progeny) lineage ex-

hibited lower Shannon diversity index (Figure 3C), suggesting

higher specialization in both lineages. To validate the inferred

sublineages, we generated a high-resolution spatial transcrip-

tomic atlas of serial coronal sections from E13.5 mouse brains

using Stereo-seq (Figure S12A) and aligned our single-cell clus-

ters to the spatial transcriptomic atlas with Tangram. The result-

ing probabilistic spatial profiles of specific cell subtypes not only

demonstrated the spatial segregation of T-zone lineage from
M-zone lineage but also corroborated the spatial proximity of

each progenitor domain and its daughter cells (Figures 3D and

S12B–S12E), supporting the robustness of our lineage inference.

To identify lineage-specific TFs that may direct neuronal

specification, we employed a cosine similarity-based algorithm

for specific gene identification along cellular hierarchy. Each

neuronal sublineage was featured by distinct TF codes (Figures

3E and S13A; Table S1H), which showed functional diversifica-

tion or redundancy for lineage specification (Figures S13B and

S13C). These potential lineage factors were evolutionarily

conserved to a large extent. For example, FOXB1 and BARHL1

specify two adjacent but distinct M-zone sublineages with sharp

boundary, whereas TBX3 defines a sublineage within T-zone in

both humans andmice (Figures 3F and 3G). To verify the inferred

neuronal sublineages, we labeled pT2 progenitor domain using

Tbx3-CreERT2::Ai9 mice to track neuronal fate at postnatal

stages (Figures 3H and S13D). Single-cell RNA sequencing at

P14 confirmed 8 out of 9 neuronal subtypes arising from Tbx3+

progenitors mapped onto T-zone lineage, including POMC,

AgRP, and KNDy neurons (Figures 3I and S13E). Moreover,

many neuronal subtypes from the inferred pT2 sublineage

were lost in Tbx3-deficient brains (Figures 3J and S13F–S13J),

substantiating our recent finding that Tbx3 depletion disrupts

lineage specification.8 These data collectively support the fidelity

of our inferred lineage tree and the functional significance of line-

age factors.

We further subdivided cells into 10 pseudotemporal bins,

identified gene modules by non-negative matrix factorization

(NMF), and annotated them with the top-ranked genes

(Figures S14A–S14D; Tables S1I and S1J), aiming to uncover

species-specific metagene programs that drive lineage progres-

sion. Clustering analysis revealed shared biological processes

across species, with human neuronal lineages showing specific

RNA splicing enrichment and mouse development featuring

higher oxidative phosphorylation activity (Figures S14C–S14G).

Increased RNA splicing in humans may enhance protein

complexity, favoring energy-efficient information processing,37

while lower mitochondria metabolism contributes to human

brain neoteny.38 Altogether, we computationally reconstructed

neuronal lineage tree in the developing hypothalamus, high-

lighting conserved lineage factors and distinct metagene pro-

grams specific to humans.

Shared and divergent features of neuronal subtypes
during development
Distinct neurogenic sublineages diverge across the develop-

mental continuum and give rise to a multitude of neuronal sub-

types. To reveal neuronal heterogeneity, we independently clus-

tered human and mouse hypothalamic neurons to identify

neuronal subtypes, followed by cross-species comparison to

establish their homology (STAR Methods). We found that most

of neuronal subtypes were conserved between humans and

mice (Figure S15A). Given the conservation, we integrated hu-

man and mouse postmitotic neurons and identified 26 glutama-

tergic and 24 GABAergic subtypes with distinct molecular signa-

tures and spatial distribution (Figures 4A, S15B, S15C, and

S16A; Table S1K). Further comparison between human and ma-

caque neurons supported their conservation to a large extent

(Figures S16B–S16D), despite the number of macaque neurons
Developmental Cell 60, 1–15, July 7, 2025 5
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Figure 3. Inference of hypothalamic lineage tree and conserved lineage factors

(A) Computational reconstruction of hypothalamic neuronal lineage tree linking RGC progenitor domains (blue), IPCs (pink), and neurons (purple and cyan).

(B) Subclustering analysis of IPCs and neurons at embryonic and fetal stages for lineage inference.

(C) Shannon entropy analysis of the inferred PTh-, P-, A-, T-, andM-zone lineages based on TF expression diversity. A smaller Shannon diversity index indicates a

higher fidelity of lineage identity during neuronal differentiation.

(D) Spatial transcriptomic analysis of signature gene modules for each progenitor and neuronal subtype within T- and M-zone lineages.

(E) Identification of lineage-specific TFs for P-, A-, T-, and M-zone lineages.

(F) Crown plots showing three conserved lineage factors in humans and mice.

(G) Immunostaining indicating the spatial segregation of M and SM zones by FOXB1 and BARHL1 in both E10.5 mouse and PCW6 human brains. Scale bars, 100

and 10 mm.

(H) Genetic labeling of pT2 progenitor domain with Tbx3-CreERT2::Ai9 mice at E10 and characterization of progeny neuron identities at P14 by single-molecule

fluorescent in situ hybridization. Scale bars, 50 and 20 mm.

(I) Mapping of single-cell data from Tbx3-derived lineage onto UMAP plot that integrates T-zone neuronal lineage. Experimentally traced neuronal subtypes are

color-coded.

(J) Reverse mapping of randomly sampled cells from inferred Tbx3 lineage onto UMAP plot that integrates 50,872 hypothalamic neurons from control and Tbx3

conditional knockout (CKO) mice.
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Figure 4. Transcriptional conservation and innovation of neuronal subtypes

(A) UMAP plot of transcriptionally defined neuronal taxonomy of the mouse and human developing hypothalamus, visualizing 155,089 neurons. Surrounding

histograms from inner to outermost represent cell proportions for each species, developmental time points, and group, respectively.

(B) Projection of a neighborhood graph identified by Milo differential abundance testing onto UMAP plot. Nodes represent neighborhoods, colored by their log2
(fold change) across species.

(C) Beeswarm plot of the distribution of log2 (fold change) across species in neighborhoods containing cells from different neuronal subtypes.

(D and E) Sample images showing the species-specific abundance of ONECUT1+LHX1+ neurons in human PCW16 hypothalamus (D) compared with P0 mouse

brains (E). 3V, third ventricle. Scale bars, 100 and 20 mm.

(legend continued on next page)
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being limited. We identified 89 TFs with conserved and specific

expression in different neuronal subtypes (Figure S17) and

adapted single-cell regulatory network inference and clustering

(SCENIC) to unveil a list of potential master regulators shaping

neuronal identities (Figures S18 and S19; Tables S1L and S1M).

Given that voluntary control of hypothalamic subsystems is

mediated by inputs from the medial prefrontal region and ventral

temporal lobe of neocortex in humans,39,40 we expected adap-

tive changes in neuronal composition, molecular expression, or

spatial location across species due to neocortex expansion.

Indeed, we identified a neuronal subtype (In15) that was

much more abundant in the developing human hypothalamus

compared with mice (Figures 4B and 4C), confirmed by neuronal

subtype alignment analysis (Figures S20A and S20B). Further

immunostaining revealed the presence of ONECUT1+LHX1+

In15 neurons across the primordium of anterior nucleus and dor-

somedial nucleus in the human hypothalamus at PCW6 and

PCW12 (Figures 4D, S20C, and S20D), in contrast to the minimal

overlap between ONECUT1 (One Cut Homeobox 1) and LHX1

(LIMHomeobox 1) signals in prenatal and perinatal mouse brains

(Figures 4E and S20E). To assess the role of ONECUT1 in

neuronal morphogenesis, we ectopically expressed human

ONECUT1 in the developing mouse hypothalamic neurons,

demonstrating increased neurite outgrowth both in vitro and

in vivo (Figures 4F, 4G, and S20F–S20I). Interspecies divergence

arises from not only the gain or loss of specific neuronal subtypes

but also the complexity of individual homologous cell subtypes.

We adopted an entropy-based metric and revealed that the

intercellular transcriptomic variability of 10 excitatory subtypes

and one inhibitory subgroup was significantly augmented in the

human hypothalamus (Figure 4H). These data imply the potential

functional diversification of human hypothalamic excitatory

neurons.

Differential gene expression profiles can also contribute to

species-specific variations in the structure and function of

each conserved cell subtype. Our analysis demonstrated a rela-

tively limited human-mouse transcriptomic divergence across

various neuronal subtypes (Figures S21A–S21C; Table S1N).

While homologous neuronal subtypes in the human and mouse

hypothalamus largely shared core regulatory complex TFs (Fig-

ure S21D; Table S1O), a substantial number of genes encoding

ligands, receptors, ion channels, and synaptic components

were upregulated in the human excitatory and inhibitory neurons

in both sexes, as compared with mice (Figures 4I, 4J, S21E, and

S21F; Table S1O). Specifically, human neurons displayed higher

expression levels for axon guidance cues (e.g., SEMA6D,

SEMA6A, and EFNB2), their receptors (e.g., EPHB1, PLXNC1,
(F) Sample images showing the morphology of hypothalamic neurons (red) ectop

were dissected from E16.5 vGat-Cre::Ai14 mice, cultured in vitro for plasmid tran

(G) Quantification of neuronal morphology (control, n = 24; ONECUT1, n = 35). D

Student’s t test.

(H) Transcriptomic heterogeneity among cells in each neuronal subtypes across sp

human-mouse difference (adjusted P value < 0.01 and log2 (fold change) > 1) is

(I) Treemap showing the frequency of human- or mouse-enriched ligands, recept

number of neurons subtypes with species-specific gene enrichment.

(J) Normalized gene expression scores for ligands, receptors, channels, presyn

glutamatergic neurons; In, GABAergic neurons.

(K) Comparative gene expression analysis of human and mouse ligands (left), rec
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and PLXNA4), neurite outgrowth regulators (FZD3 and NTRK2),

postsynaptic channels (subunits of AMPA, NMDA, and kinase

receptors), and clustered protocadherins (Figures 4K and

S22A–S22C), which could facilitate extensive and intricate con-

nectivity. Overall, we identified 50 unique neuronal subtypes with

diverse molecular signatures in the developing hypothalamus,

revealed a transcriptionally distinct neuronal subtype enriched

in humans, and disclosedmultiple sources of cross-species vari-

ation that may contribute to the increased complexity, connec-

tivity, and modulation of human hypothalamic neurons.

Spatial redistribution of human GnRH and GHRH
neuroendocrine neurons
An inherent attribute of the mammalian hypothalamus lies in its

intricate neuroendocrine system (Figure S23A), which comprises

a heterogeneous collection of neuropeptidergic neurons

secreting oxytocin, vasopressin (AVP), corticotropin-releasing

hormone (CRH), thyrotropin-releasing hormone (TRH), somato-

statin, growth-hormone-releasing hormone (GHRH), and gonad-

otropin-releasing hormone (GnRH) either directly into the pitui-

tary or indirectly via hypophyseal portal system.41 To profile

developing neuroendocrine neurons, we isolated them using ca-

nonical markers (e.g., neurohormones and SCG2 encoding a

neuroendocrine secretory protein) and revealed 13 subclusters

within 7 main subtypes (Figures S23B–S23D; Table S1P). Pseu-

dobulk differential expression analysis has revealed the molecu-

lar characteristics of these neuronal subtypes, such as enriched

expression of genes associated with DNA damage and oxidative

stress in CRH neurons (Figure S23E). We further identified a set

of shared TFs within each human and mouse neuronal subtype

(Figure S23F), implicating their roles in establishing cellular iden-

tities or functions. For instance, ONECUT family genes, known

for specifying neuronal fate, were enriched in TRH neurons,10

while NR3C1 expression, involved in negative feedback control

of glucocorticoid release, emerged early in prenatal CRH

neurons.42

Despite diverse spatial positions, neuroendocrine neurons

project their axons uniformly toward the hypothalamic median

eminence that encompasses hypophyseal portal vessels.41

Our single-cell and spatial transcriptomic data suggested that

Netrin-DCC, Slit2-Robo, and ephrinA5-Eph signaling may coor-

dinate to mediate the precise pathfinding of neuroendocrine

axons (Figure S24), extending previous studies showing that

SHH, BMP7, and FGF10 regulate the orientation of hypothalamic

axons toward median eminence.43,44

To reveal interspecies differences in neuroendocrine neurons,

we first focused on cell subtype abundances, noting an
ically expressing human ONECUT1 (white) and EGFP (green). These neurons

sfection, and analyzed after 7 days. Scale bar, 75 mm.

ata are shown as mean ± SEM (*p < 0.05; **p < 0.01 by two-tailed unpaired

ecies, reflected by Shannon entropy. A neuronal subtype (In15) with significant

highlighted in color.

ors, and channels, which are color-coded. The size of each box represents the

aptic, and postsynaptic components in both human and mouse neurons. Ex,

eptors (middle), and channels (right).
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Figure 5. Species-specific variations in neuronal distribution and signal transduction

(A) A schematic showing spatial distribution and projection of neuroendocrine neurons in mouse brains.

(B) Representative images demonstrating the widespread distribution of GnRH neurons in the P- and T-zones of PCW16 human hypothalamus (top row), in

contrast to their confinement primarily to preoptic area in mice (bottom row). Fx, fornix. Scale bars, 500 and 50 mm.

(C) Graphical summary of the spatial distribution patterns of human and mouse GnRH neurons.

(legend continued on next page)
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increased proportion of GnRH neurons within the human devel-

oping hypothalamus (Figures S25A and S25B). GnRH neurons,

controlling puberty onset and reproduction, originate from olfac-

tory placode and migrate to the hypothalamus along olfactory-

vomeronasal nerves in mammals.45 Immunostaining of human

PCW16 and mouse neonatal brains confirmed that the human

hypothalamus accommodated a greater number of GnRH neu-

rons (Figures 5A, 5B, and S25C–S25E). Next, we found a broader

spatial distribution of human GnRH neurons, ranging from

septal-preoptic region to infundibular nucleus (i.e., rodent

arcuate nucleus) and mammillary body, whereas mouse GnRH

neurons were predominantly distributed in the preoptic zone

(Figures 5B, 5C, and S25F–S25I). Our results support previous

reports on species differences in GnRH neuron distribution46,47

but further show that human GnRH neurons deviated from hypo-

thalamic midline and migrated along the ventrolateral margin af-

ter crossing septal-preoptic region (Figure S25C), implicating

that they move along their own axonal guides upon detachment

from vomeronasal nerves.

Furthermore, we unexpectedly revealed a species-specific

variation in the spatial organization of GHRH-expressing neu-

rons, which regulate growth and metabolism. In contrast to the

spatial accumulation of mouse GHRH neurons in arcuate nu-

cleus (Figure S25J), their human counterparts were not only

distributed in infundibular nucleus but also dispersed into lateral

hypothalamus, posterior hypothalamic nucleus, and lateral

mammillary region (Figures 5D, 5E, and S25K). Notably, the

spatial distribution of human GHRH neurons in lateral hypothal-

amus displayed a wreath-like shape (Figure 5E), encircling a

densely aggregated subnucleus lateral to fornix. These findings

suggest an early genesis and multiple origins of GHRH neurons

in fetal human brains and also provide clues for the potential pro-

duction of GHRH beyond arcuate nucleus as a neuromodulator

or circulating hormone. Together, human GnRH and GHRH neu-

rons are spatially redistributed during evolution, implying spe-

cies-specific differences in their network organization and func-

tional significance within the hypothalamus.

Reshuffled inter-transmitter and peptide-dopamine
couplings across species
Another important attribute of hypothalamic neurons is their intri-

cate interplay between neurotransmitters and neuropeptides,

especially in the dopamine neuron system, which is traditionally

subdivided into A11-A15 groups (Figures 5F, 5G, S26A, and
(D) Immunostaining showing a wreath-shaped distribution of GHRH neurons in the

500, 200, and 50 mm.

(E) A graphic summary of the differences in GHRH neuron distribution between h

(F) Spatial definition of canonical dopamine (DA) neurons in the mouse hypothala

(G) A sample image showing the distribution pattern of TH-expressing DA neuron

nucleus; DMH, dorsomedial nucleus; VMH, ventromedial nucleus; ARC, arcuate

(H) UMAP visualization of hypothalamic DA and DA-like neurons co-expressing

differences in DA-glutamate and DA-GABA couplings between human and mous

(I) Identification and spatial annotation of non-canonical DA-like neurons in the m

(J) Dynamic curves of normalized cell ratio across species and developmental sta

(K) Sample images showing the co-expression pattern of AVP and TH in the PCW1

(SON). Scale bars, 20 mm.

(L) Sample images showing the coupled expression of TH with GHRH in mouse

(M) Schematic diagrams summarizing a model of potential evolutionary change

DA-like neurons.
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S26B).48,49 To investigate species differences in inter-transmitter

and peptide-dopamine couplings, we subset hypothalamic

dopamine neurons using the established criteria.15 While it is hy-

pothesized that they originate from GABA lineage and preva-

lently co-express GABA synthesis pathway in rodents,15,50 we

noticed an interesting coexistence of dopamine-glutamate and

dopamine-GABA couplings (Figures 5H and S26C–S26E). This

dual-transmitter dichotomy potentially stems from divergent TF

code expression, as evidenced by DLX (Distal-Less Homeobox)

factors associated with dopamine-GABAergic neurons and

NHLH2/UNCX enriched in dopamine-glutamatergic neurons

(Figure S26E). Notably, our ratio analysis unveiled that dopa-

mine-glutamate coupling was more pronounced in the human

dopamine system than in mouse neurons (Figures 5H and

S26F). This divergence in inter-transmitter coupling may drive

phenotypic differences between species, such as evolutionary

alteration in reward learning and motivated behavior.

Among these dopamine and dopamine-like neurons, we iden-

tified 10 canonical subtypes (A11-A15) primarily coupled with

GABA and 8 non-canonical subclusters (D1-D4) with glutamater-

gic feature (Figures 5I and S26G–S26J; Table S1Q). They ex-

hibited distinct transcriptional profiles from midbrain dopami-

nergic neurons (Figures S27A–S27C), featured by En1 and En2

expression.51 Genome-wide association mapping connected

them to psychiatric conditions, metabolic disorders, and per-

sonal traits but not to Parkinson’s disease (Figure S27D). Intrigu-

ingly, the D4 subtype displayed the highest transcriptional simi-

larity to midbrain dopamine neurons (Figures S27E–S27H),

implying potential value to alleviate Parkinson’s disease. We

further showed a prevalence of D3-3 subtype in human dopa-

mine system as compared with mice, suggesting a pronounced

colocalization between dopamine and AVP in humans (Fig-

ure 5J). Immunostaining confirmed that a subset of AVP neurons

coexpressed tyrosine hydroxylase (TH) in human paraventricular

and supraoptic nuclei (Figures 5K and S27I). By contrast, GHRH-

dopamine coupling was more prominent in mice than in humans

(Figures 5J and 5L). These data suggest that particular subtypes

of dopamine neurons could either gain or lose interactions with

specific neuropeptides, potentially influencing catecholamine-

mediated neuronal signaling. Collectively, we revealed an in-

crease in the dopamine-glutamate interaction within human

hypothalamus compared with mice and a reshuffled dopa-

mine-neuropeptide coupling across species (Figure 5M), which

presumably serves as an important source of interspecific
lateral hypothalamus of humans but not in mice. OC, optic chiasm. Scale bars,

umans and mice.

mus.

s in the human hypothalamic T-zone at PCW12. PHN, posterior hypothalamic

nucleus. Scale bar, 1 mm.

either glutamate or GABA transmitter, while cell ratio analysis highlights the

e on the right. ***p < 0.001 determined by permutation test.

ammalian hypothalamus.

ges, highlighting the species difference in D3-3 and A12-2 neuronal subtypes.

6 human and P0mouse paraventricular nucleus (PVN) and supraoptic nucleus

but not human ARC. Scale bars, 20 mm.

s of inter-transmitter and peptide-transmitter couplings in human DA and/or
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variation in the behavioral effects of dopamine and distinct

neuropeptides.

DISCUSSION

Subcortical brain structures substantially contribute to homeo-

static regulation, behavioral control, and cognitive functions;

however, our understanding of subcortical development and

evolution in humans falls far behind that of neocortex. In

this study, we present comprehensive datasets that reveal

conserved neural patterning and neurogenic lineages in the

developing human and mouse hypothalamus, alongside spe-

cies-specific neuronal subtype abundance, molecular charac-

teristics, spatial distribution, and neuromodulator couplings.

While the human fetal hypothalamus features a unique neuronal

subtype and increased neuromodulatory gene expression, we

also observed spatial redistributions in two subtypes of human

neuroendocrine neurons and a reconfiguration of neuromodula-

tor coupling within human hypothalamic dopamine neurons

compared with mice. Finally, we developed a web-based data

resource that facilitates cross-species comparison of hypotha-

lamic development.

Conserved spatial patterning of tertiary organizers and
progenitor domains
During early neurodevelopment, mammalian brains are orga-

nized into spatially distinct progenitor domains, generating

various neuronal subtypes through specific spatiotemporal

specification processes.52 We combined single-cell and spatial

transcriptomics to define 9 hypothalamic progenitor domains

and revealed the segmentation of hypothalamic primordium

along the AP axis orchestrated by FOX gene family. Comparative

analysis demonstrated that the spatial TF codes demarcating

diverse progenitor domains were generally shared between hu-

man and mouse hypothalamus. It is well-known that spatial

patterning of neural progenitors relies on morphogen gradients

that induces TF code expression.53,54 We analyzed morphogen

(e.g., Shh, Wnt-, Fgf-, Bmp-, and Rspo-family genes) expression

and proposed that the spatial organization of developing hypo-

thalamus was shaped by tertiary organizers with evolutionary

conservation. Specifically, WNT7B, RSPO3, and RSPO1 delin-

eated anterodorsalizing organizer in the prethalamus; WNT8B,

WNT5A, and RSPO2 were enriched in caudalizing organizer;

and a complementary expression of SHH and FGF-family genes

was orchestrated to establish a floor-plate organizer. The pro-

posed tertiary organizers may instruct the self-organization of

various progenitor domains and induce locally different neuronal

fates. These results, yielded from single-cell and spatially

resolved transcriptomic analyses, broaden our understanding

of the compartmentalized expression of secreted ligands in

conferring regional identity of diverse neural progenitors.

Developmental logics and conserved lineage factors
directing lineage specification
Neural progenitors can give rise to distinct neuronal subtypes

through lineage divergence and/or convergence.55 This dynamic

entails the production of a unique set of neuronal subtypes by

each progenitor domain (divergence), while also allowing neural

progenitors from different lineages to generate identical or
closely related neuronal subtypes (convergence). To grasp the

framework of lineage progression in the hypothalamus, we

developed a computational tool to systematically map a hypo-

thalamic neuronal lineage tree by reconstructing lineage relation-

ships between progenitor domains and neuronal subtypes. This

tool hinges on the established hypothesis that neurons acquire

the molecular identity via inheriting TF codes from their ancestor

cells. In contrast to embryonic spinal cord, wherein distinct pro-

genitor domains arrayed along the DV axis produce neurons in a

divergent manner,52 both lineage divergence and convergence

may occur among various hypothalamic progenitor domains.

Of note, neural progenitors in T- and M-zones demonstrate a

more restricted spatial segregation and lineage specialization.

We further profiled the lineage-specific TFs that potentially

mark, specify, andmaintain cellular identities along individual hy-

pothalamic sublineages and suggested that functional redun-

dancy and diversification of lineage factors from the same

gene family at least partially underlie the logic governing subline-

age specification. Importantly, these lineage factors are largely

shared between humans and mice, highlighting conserved con-

trol of lineage-specific neuronal production in the hypothalamus.

Consistent with this finding, genetic ablation of Tbx3, a critical

lineage factor specifying pT2 sublineage, not only disrupts the

establishment of POMC and KNDy neuronal identities in mice

but also mirrors the clinical manifestations (such as obesity

and delayed puberty) in patients with TBX3 mutations.8,56,57

Collectively, our data establish a lineage tree for the developing

hypothalamus and unveil a conserved mechanistic framework

with multilayered cellular and molecular logic to ensure the sta-

bility of neuronal production during lineage progression.

Human-specific neuronal features in the developing
hypothalamus
Despite the conserved cellular mechanisms governing neural

patterning and neurogenic lineage specification, we explored

species divergence of abundance, heterogeneity, molecular fea-

tures, and spatial distribution of homologous neuronal subtypes.

First, we subdivided the hypothalamic postmitotic neurons into

50 subgroups and identified cross-species homologies between

most human and mouse neuronal subtypes. Notably, the

human fetal hypothalamus contains a unique ONECUT1+LHX1+

neuronal subtype. Given the roles of cadherin in neuronal sorting

and migration,58 this evolutionarily divergent neuronal subtype,

featured by enriched expression of cell adhesion (CDH11,

CDH9, and CDH8) and axon guidance (SEMA3C, PLXNA4, and

DAB1) molecules, may regulate chronological organization of

neurons in an outside-in manner, control axonal fasciculation,

and modify final target recognition of neuronal projections from

prefrontal cortex. Second, we reveal that several excitatory

neuronal subtypes in the human hypothalamus are transcription-

ally more diversified than in mice, implying greater structural and

functional diversification during human neuronal development.

Although long-range GABAergic projection neurons exist,

remote axonal projections are predominantly mediated by gluta-

matergic neurons.59 The expanded diversity in human excitatory

neurons suggests that a more complicated intra-hypothalamic

and trans-regional connectome emerges to relay command in-

formation andmaintain system homeostasis. Third, we observed

a more pronounced expression of genes regulating axonal
Developmental Cell 60, 1–15, July 7, 2025 11



ll
Resource

Please cite this article in press as: Chen et al., Transcriptional conservation and evolutionary divergence of cell types across mammalian hypothalamus
development, Developmental Cell (2025), https://doi.org/10.1016/j.devcel.2025.03.009
growth and synaptic signaling in humans. Higher levels of axon

guidance molecules, clustered protocadherins, and neurite

outgrowth regulatorswould elongate axonal growth, steer axonal

projections more precisely, and promote repulsion between ho-

motypic neurites.60 In parallel, increased expression of presyn-

aptic andpostsynaptic components in humanhypothalamic neu-

rons enables a tight control of native behaviors, adapting to the

rapidly expanded neocortex. Fourth, human GnRH and GHRH

neurons exhibit a broader distribution in the hypothalamus

compared with mice. This change suggests either multiple ori-

gins or redirected migratory path of human neuroendocrine neu-

rons that govern vitally important processes, including growth,

reproduction, andmetabolism. Given that GnRH andGHRHneu-

rons have also been shown to improve cognition and promote

slow wave activity,61–63 their spatial redistribution observed in

humans might not only cater to heightened hormone release de-

mand but also potentially enhance primate cognition. Lastly, our

analysis of hypothalamic dopamine neurons provides proof-of-

concept evidence to demonstrate the potential shift in inter-

transmitter and peptide-transmitter couplings across species.

Neuropeptides are auxiliary messenger molecules that always

co-exist in neuronswith one ormore neurotransmitters and serve

as neuromodulators to regulate neuronal activity.48 Further

studies to elucidate the potential functions of such species-spe-

cific variation in peptide-neurotransmitter couplings are required.

In summary, our study of hypothalamus development and

evolution suggests that human subcortical structures might

adopt conserved neural patterning strategies but appropriately

adapt neuronal composition, distribution, input sensitivity, and

output robustness for advanced social cognition and behavioral

flexibility. The computational reconstruction of hypothalamic

lineage tree provides a framework for experimentally decon-

structing lineage-specific neuronal fate determination and func-

tional connection. The innovation among hypothalamic neurons

found in this work will facilitate us to delve into the cellular mech-

anisms underlying human-specific physiological function and

disease susceptibility.

Limitations of the study
Our work aligns with recent studies on major cell types and

developmental trajectories of neurons in the developing human

hypothalamus.16,28 It similarly provides in-depth analyses of

key regulons, molecular features, and the spatial distribution of

neuronal subtypes. In stark contrast, we elucidate the molecular

logic of neural patterning, propose the concept of tertiary orga-

nizers, reconstruct the neurogenic lineage tree, and reveal four

aspects of neuronal innovation, including distinct neuronal distri-

bution and neuromodulator couplings. There are several limita-

tions to the interpretation of our results. First, although we

collected approximately 200,000 cells from the human hypothal-

amus, a larger sample size that includes both sexes and multiple

replicates at each time point would strengthen our findings. We

have validated the conservation and consistency of our results

using publicly available datasets. Second, while we have pro-

vided deep insights into neural patterning mechanisms and

neuronal innovation, functional analyses of FOX gene swapping,

human-specific neuronal subtypes, and reorganized neuromo-

dulator couplings present challenges for future research. Lastly,

although we identified transcriptomic features specific to human
12 Developmental Cell 60, 1–15, July 7, 2025
hypothalamic neurons, the hub genes that shape these distinc-

tive profiles and enable the conversion of mouse neurons into

human-like ones remain unclear.
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Hammerschmidt, M., and Placzek, M. (2013). Direct and indirect roles of

Fgf3 and Fgf10 in innervation and vascularisation of the vertebrate hypo-

thalamic neurohypophysis. Development 140, 1111–1122. https://doi.org/

10.1242/dev.080226.

45. Duittoz, A.H., Forni, P.E., Giacobini, P., Golan, M., Mollard, P., Negrón,

A.L., Radovick, S., and Wray, S. (2022). Development of the gonado-

tropin-releasing hormone system. J. Neuroendocrinol. 34, e13087.

https://doi.org/10.1111/jne.13087.

46. Silverman, A.J., Krey, L.C., and Zimmerman, E.A. (1979). A comparative

study of the luteinizing hormone releasing hormone (LHRH) neuronal net-

works in mammals. Biol. Reprod. 20, 98–110. https://doi.org/10.1093/bio-

lreprod/20.1.98.

47. Casoni, F., Malone, S.A., Belle, M., Luzzati, F., Collier, F., Allet, C.,

Hrabovszky, E., Rasika, S., Prevot, V., Chédotal, A., and Giacobini, P.
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Mouse: Rax-CreERT2 line The Jackson Laboratory RRID: IMSR_JAX:025521

Mouse: Ai9 reporter line The Jackson Laboratory RRID: IMSR_JAX:007909
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ggraph v2.1.0 See Thomas Lin Pedersen https://github.com/thomasp85/ggraph

Tangram v1.0.4 See Biancalani et al.72 https://github.com/broadinstitute/Tangram
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motifmatchr v1.22.0 William Greenleaf’s Lab, Stanford
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Sambamba v0.7 Pjotr Prins’s labs, St. Petersburg
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RRID: SCR_014199

Adobe Illustrator Adobe http://www.adobe.com/products/illustrator.html;
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DNBSEQ� technology platform MGI N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human sample collection
Human fetuses at post-conception weeks (PCW) 5, 6, 7, 9, 10, 12, 13, 16 and 20 were collected at Baoding Second Central Hospital

and quickly delivered on ice to the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Each develop-

mental stage of the human hypothalamus is represented by 1-2 samples only, with key stages (e.g. PCW6 and PCW10) each

including two samples. Among these, PCW6 samples include both sexes and both PCW10 samples are male, while the remaining

samples are female. The fetal hypothalamus was freshly microdissected for single-cell RNA sequencing (scRNA-seq) or frozen in

liquid nitrogen to perform single-nucleus RNA sequencing (snRNA-seq). Prior to sequencing, samples were screened for RNA quality

by isolating total RNA from a small piece of tissue and measuring the RNA Integrity Number (RIN) using the Agilent 2100 Bioanalyzer.

Only samples with a RIN R 6 were selected for single-cell or single-nucleus RNA sequencing. An informed consent document was

signed by each pregnant female before human fetus collection. All experimental procedures were reviewed and approved by the

Medical and Institutional Ethics Committee (IGDB-2020-IRB-001). Human adult hypothalamic samples were acquired from the

Netherlands Brain Bank (NBB), with consent from donors or their next of kin for brain autopsy, access to medical records and

research use of brain tissues. Permission to collect human adult brain material was granted by the Medical Ethics Committee of

the VU University Medical Center, Amsterdam, the Netherlands.

Macaque fetal hypothalamus collection
Macaque samples at PCW5, 8, 11 from natural conception were collected at the Beijing Institute of Xieerxin Biology Resource under

the supervision of a veterinarian. Due to resource limitations during COVID-19 pandemic, macaque hypothalamic tissues included

only one sample per developmental stage, with PCW5 being the only female specimen and the rest beingmale. The cesarean section

was expeditiously performed, with a delivery time of fewer than 5 min, following the general anesthesia of the dam under sterile con-

ditions. After the delivery of fetus, the dam received uterine and skin closure in accordance with international standard operating
e3 Developmental Cell 60, 1–15.e1–e12, July 7, 2025
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procedures, and postoperative care including pain management. The collected brains were maintained in ice-cold DMEM/F12 me-

dium (Gibco, 11320033) during the microdissection process. Under the microscope, the hypothalamus was meticulously isolated

according to the Brain Maps Site (http://www.brainmaps.org). All procedures were conducted in compliance with prior approval

by the Institutional Animal Care and Use Committee of Xieerxin Biology Resource (XEX20212025).

Mice
To collect prenatal and perinatal brains from wild-type mice, we ordered male and female C57BL/6N mice from SPF Biotechnology

Co. Ltd (Beijing, China), bred them and checked the vaginal plug to determine the time of pregnancy. The noon of the day when the

vaginal plug was detected was designated as embryonic day 0.5, and the mouse embryos at the age of E10.5, E12.5, E13.5 and P0

were obtained by cesarean section.

To conduct lineage tracing of Tbx3+ progenitor domain, we crossed Tbx3-CreERT2 male mice with Ai9 (Stock No. 007909) female

mice, and intraperitoneally injected a single dose of tamoxifen (132 mg/kg body weight) into timed pregnant females at E9 or E10.

TdTomato-labeled embryos at E11 were collected for direct fixation with cold 4% paraformaldehyde (PFA) in phosphate-buffered

saline (PBS). To obtain postnatal brains at P14 and P30, we recovered live embryos at E18-E19 by cesarean section, cared for

the pups with foster female animals, and sacrificed the mice for further analyses.

Animals were maintained on a 12-hour (hr) light-dark cycle with ad libitum access to food and water. All animal procedures in this

study were performed according to protocols approved by the Institutional Animal Care and Use Committee at the Institute of Ge-

netics and Developmental Biology, Chinese Academy of Sciences.

METHOD DETAILS

Immunohistochemistry
Mice were anesthetized by hypothermia and then transcardially perfused with saline followed by 4%PFA in PBS. Mouse brains were

immediately dissected, post-fixed for 4-8 hrs in 4% PFA at 4�C, and subsequently cryo-protected in 20% sucrose in PBS for 12 hrs

followed by 30% sucrose for 12 hrs. Human fetal samples were fixed for 1-3 days in 4%PFA at 4�C and subsequently cryo-protected

in 20% sucrose 24 hrs followed by 30% sucrose for 24-48 hrs. Tissue blocks were prepared by embedding samples in Tissue-Tek

O.C.T. Compound (Sakura 4583). Brain sections (20-40 mm in thickness) were prepared using a cryostat microtome (Leica,

CM3050S) and stored in a -80�C freezer. For immunostaining, hypothalamic tissue sections were washed with 13TBS (pH=7.4, con-

taining 3 mM KCl, 25 mM Trizma base, and 137 mM NaCl). To unmask epitopes, retrieved using Target Retrieval Solution (DAKO,

S1699) at 95�C and pre-blocked with 13TBS++ (TBS containing 5% donkey serum and 0.3% Triton X-100) for 1 hr at room temper-

ature (RT), followed by incubation with primary antibodies diluted in TBS++ overnight at 4�C. Human adult postmortem brain tissues

were immersed in 10% phosphate-buffer formalin at RT after autopsy. Then, hypothalamic tissue was embedded in paraffin and

sectioned in a rostral caudal orientation (6 mm in thickness), using a microtome. Anatomical orientation of the PVN and SON was

determined byNissl staining of every 100th section available, and further validated by evaluation of AVP-ir. For histological procedure,

sections were mounted in Superfrost+ slides (Thermo Scientific), and dried on a 37�C heating plate for 48 hrs. Removal of paraffin

was achieved by immersion of sections in 100% xylene, followed by rehydration in grading ethanol (100%–50%), and rinsed in

distilled water. Heat induced antigen retrieval was performed using microwave treatment (10 min at 700 W) in citrate buffer

(82.5 mM sodium citrate dihydrate and 17.5 mM citric acid; pH 6.0). After cooling, sections were washed in 13TBS, treated with

3% hydrogen peroxide in SUMI buffer (0.25% gelatine, 0.5% Triton X-100 in TBS (pH 7.6)). Sections were then washed in

13TBS, and incubated with their primary antibodies for 1 hr at RT, followed by overnight incubation at 4�C.
The primary antibodies used in this study included goat anti-Foxb1 (Abcam; ab5274; 1:500), rabbit anti-Barhl1 (Novusbio; NBP1-

86513; 1:500), sheep anti-ONECUT1 (R&D; AF6277; 1:300), mouse anti-LHX1 (DSHB; 4F-2; 1:10), rabbit anti-GnRH (Abcam;

ab281844; 1:500), rabbit anti-GHRH (Abcam; ab187512; 1:300), Rat anti-TH (Oasis Biofarm; OB-PGP064; 1:500), rabbit anti-TH

(Merck, T8700-1VL) (adult humans exclusively), rabbit anti-Avp (Immunostar; 20069; 1:500), rabbit anti-Avp (Oasis Biofarm; OB-

PRB033; 1:500), mouse anti-Avp (produced by Netherlands Institute for Neuroscience, a gift from dr. F.W. Leuween, OT-A-I-28)

(adult humans exclusively), rabbit anti-Nkx2.1 (Abcam; ab76013; 1:300), rabbit anti-mCherry/tdTomato (Oasis Biofarm; OB-

PRB013; 1:1000). After the primary antibody incubation, the brain sections were washed three times with 13TBS and incubated

with the following secondary antibodies for 2 hrs at RT: anti-mouse Cy2, anti-sheep Cy2, anti-rat Cy3, anti-goat Cy3, anti-rabbit

Cy3 and anti-rabbit Cy5 (Donkey; Jackson ImmunoResearch; 1:500). For adult human hypothalamic sections, sections were washed

and incubated with biotinylated secondary antibody and avidin–biotin complex (1:400 goat anti-mouse IgG, BA-9200-1.5, Vector

Laboratories) for 1 hr. Sections were then rinsed and incubated with a corresponding fluorescent secondary anti-rabbit antibody

(against TH) and streptavidin-fluorescence for 1 hr. Sections were once again rinsed with TBS, followed by a DAPI counterstaining

(1:5000, 62248, ThermoFischer).

Single-molecule fluorescent in Situ hybridization (smFISH)
To detect the mRNA expression pattern of SHH, RSPO2 and FGF10 in human brains as well as Pomc, Npy, Tac2, Crabp1, Ghrh,

Slc17a6 and Slc32a1 in mouse hypothalamus, we used the hybridization chain reaction (HCR) approach and designedmRNA probes

targeting their coding sequence and 30 untranslated region as previously described.8,10 The sequences of all HCR probes are listed in

Table S2 and all of them were synthesized by Sangon Biotech, China. The brain sections were permeabilized in 70% ethanol for
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4�12 hrs at 4�C, treated with 0.5% Triton X-100 in 13PBS for 1 hr, and digested with 10 mg/mL Protease K at 37�C for 2�3 min to

improvemRNA accessibility. After twowasheswith 13PBS at RT, the sectionswere pre-hybridized in 30%probe hybridization buffer

for 1 hr and then incubated in the same buffer containing HCR probes (10 mM for each) at 37�C for 12�16 hrs. After mRNA in situ

hybridization, the brain sections were rinsed with 30% probe hybridization buffer and washed with 53SSCT [containing 53sodium

chloride citrate (SSC) buffer and 0.1% (v/v) Tween-20] at RT. Simultaneously, we prepared fluorescently labeled hairpins (30 pmol) by

snap cooling 10 mL of 3 mMstock in hairpin storage buffer (heat at 95�C for 90s and cool to RT in darkness for 30min). After pre-ampli-

fication at RT for 30 min, we added the working hairpin solution to the brain sections and incubated overnight (8�12 hrs) in the dark,

followed by immunofluorescence staining with antibodies.

Plasmid construction, transfection and electroporation
Full-length human ONECUT1 was amplified, fused with a 13HA tag and T2A-EGFP at the C-terminus, and cloned into the AvrII/SalI

sites of the pCDH-EF1a (Plasmid No. 72266) vector to generate the ONECUT1-overexpressing plasmid. The pCDH-EF1a-EGFP and

pCDH-EF1a-mScarlet vectors were used as negative controls for in vitro transfection and in utero electroporation, respectively. To

validate the expression of ONECUT1-EGFP, we transfected HEK293T cells, collected cells at 3 days post-transfection and per-

formed immunoblotting.

For in vitro experiments, the hypothalamus was micro-dissected from E16.5 vGAT-Cre::Ai14 mouse brains and treated with a

digestion buffer containing 10 U/mL papain, 200 U/mL DNaseI, 13GlutaMAX, and 13B27 supplement in Hibernate-E media. After

5 minutes of digestion at 37�C, digestion was halted with 13 trypsin inhibitor, and the cell suspension was filtered through a 40-mm

cell strainer to remove aggregates. The neurons were then cultured on pre-coated cover glasses at 37�Cwith 5%CO2 in Neurobasal

Medium supplemented with 13GlutaMAX, 13B27 supplement, 100 U/mL penicillin, and 10 mg/mL streptomycin. The cover glasses

were pretreated in 24-well plates with 10 mg/mL Poly-D-lysine hydrobromide overnight, followed by treatment with 5 mg/mL laminin

for 2 hrs at 37�C.
We performed in utero electroporation as previously described.75 Briefly, E13.5 pregnant C57BL/6N mice were anesthetized with

2,2,2-Tribromoethanol at 30 mg/kg of body weight. After cleaning the abdomen with 70% ethanol, a midline laparotomy of �1.5 cm

was performed and the uterine horns were exposed. DNA plasmids (2 mg/mL) with Fast Green (2 mg/mL; Sigma) were microinjected

into a lateral ventricle of each embryo using polished glass micropipettes (Drummond). The plasmids were electroporated by deliv-

ering five square electric pulses (30 mV, 50 ms, 950 ms interval) using an electroporator (ECM-830 BTX, Harvard Apparatus). Sub-

sequently, embryos were placed back in the abdominal cavity and the abdomen wall and skin were sutured. The brain tissue was

collected at E18.5 and sliced by Vibrating Blade Microtomes for neural morphology analysis.

Single-cell isolation and scRNA-seq
To isolate single cells from fresh tissues, we collected human (PCW6, 10 and 12) and macaque (PCW5, 8 and 11) fetuses,

sectioned the fetal brains in iced Hibernate-E buffer with vibratome and microdissected the hypothalamus under a stereoscope

(Stemi 305, Carl Zeiss, Germany). The mouse hypothalamic tissues were isolated from Rax-CreERT2::Ai14 mice at E11, E14, P0

and P7 followed by fluorescence-activated cell sorting to obtain tdTomato+ cells or directly extracted from wild type mice at E10,

E11, E12, E13, E14, E15, E16, E18, P4, P8, P14, and P45. The hypothalamic tissues across different species were transferred into

a 5-mL Eppendorf tube and incubated with digestion buffer for 1.5 hrs at 37�C. The digestion was terminated by replacing the

buffer with Hibernate E buffer containing 13GlutaMAX, 0.23B27, 0.01 mM Y27632 dihydrochloride, and 1% FBS. The tissues

were then gently triturated through Pasteur pipettes with finely polished tips and washed once with Hibernate E buffer to generate

single-cell suspension.

We constructed scRNA-seq libraries with the single-cell 30 Library and Gel Bead Kit V3 (103Genomics, 1000075) according to the

instructions provided by 103 Genomics. Single-cell suspensions (300 to 600 living cells/mL determined by Count Star) were loaded

onto the Chromium Single Cell Controller to generate single-cell gel beads within emulsion (GEM). The captured cells were lysed to

release mRNA, which were then barcoded by reverse transcribing individual GEMs. Reverse transcription was carried out using the

S1000TM Touch Thermal Cycler (Bio-Rad, USA) with a program that included incubation at 53�C for 45 min, followed by 85�C for

5min and hold at 4�C. Subsequently, the complementary DNA (cDNA) library was generated, amplified, and subjected to quality con-

trol assessment using Agilent 4200. The scRNA-seq was further performed on the Illumina NovaSeq 6000 sequencer with a

sequencing depth of at least 100,000 reads per cell and 150-base pair (bp) paired-end reads.

Single-nucleus isolation and snRNA-seq
To isolate single nuclei from frozen human samples (PCW5, 6, 7, 9, 10, 13, 16, 20), we immersed the tissues in ice-cold homogeni-

zation buffer containing 250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM Tris-HCl, 0.1 mM DTT, 1% BSA, 0.1% NP-40 and ribo-

nuclease inhibitor (0.4 U/ml), followed by mechanical grinding with a glass homogenizer for 10 times and collection of single-nucleus

suspension for snRNA-seq.

We took advantage of DNBSEQ technology platforms (BGI Genomics, China) and DNBelab C4 Single-Cell Library Prep Set (MGI

Tech, #1000021082) for library preparation. Briefly, single-nucleus suspensions were pumped into microfluidic device for droplet

generation, followed by emulsion breakage, bead collection, reverse transcription and cDNA amplification to generate barcoded li-

braries. The cDNA products were then sheared to short fragments with a length of 250 to 400 bp, and indexed sequencing libraries

were constructed according to the manufacturer’s protocol. The quality of sequencing libraries was examined by the Qubit ssDNA
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Assay Kit (Thermo Fisher Scientific, #Q10212). DNBs were loaded into the patterned nano arrays and sequenced on the ultrahigh-

throughput DIPSEQ T-series sequencer.

Stereo-seq
To acquire spatial transcriptomic data, we collected E13.5 mouse brains, embedded them in Tissue-Tek O.C.T. compound and per-

formed serial sectioning at a coronal thickness of 10 mm using a cryostat microtome. The tissue sections were mounted on Stereo-

seq chip (131 cm), dried at 37�C for 3 min and fixed in precooled methanol for 30 min at -20�C. Before tissue permeation, we stained

the sections with a nucleic acid reagent (Invitrogen, Q10212) for 5 min, washed them with RNase-free 0.13SSC buffer and captured

the images using a Motic PA53 FS6 microscope.

Subsequently, we permeated the tissue sections by incubating them with 0.1% pepsin in HCl buffer (0.01 M) for 10 min at 37�C to

expose mRNA, performed reverse transcription for 3 hrs at 42�C and then digested with tissue removal buffer (10 mM Tris-HCl,

25 mM EDTA, 100 mM NaCl, 0.5% SDS) at 55�C for 10 min. Furthermore, the chip was treated with Exonuclease I (NEB,

M0293L) for 16 hrs at 37�C to release barcoded cDNAs and washed once with 0.13SSC buffer. The cDNAs were amplified using

Hot Start DNA Polymerase (QIAGEN, 203603), purified using 0.63 VAHTSTM DNA Clean Beads and quantified using the Qubit

dsDNA HS assay kit (Invitrogen, Q32854). We next tagmented the cDNAs with Tn5 transposases at 55�C for 10 min, amplified the

fragmented cDNAs and purified them with AMPure XP Beads. The purified products were used for generating DNA nano balls

and sequenced on the DNBSEQ-T series sequencing platform (MGI Tech, Shenzhen, China) using 50 bp for read 1 and 100 bp

for read 2.

Sequencing data preprocessing
For scRNA-seq data sequenced with 103 Genomics Chromium platform, we used the Cellranger’s pipeline (v3.0.2) to demultiplex

raw sequencing data, assign barcodes and quantify unique molecular identifiers (UMIs). Using a prebuilt annotation package, we

mapped the reads to human (GRCh38/hg38) and macaque (Macaca_fascicularis_6.0) reference genomes to generate gene expres-

sion matrices. For human snRNA-seq data produced by DNBSEQ platform, we filtered and demultiplexed the raw sequencing reads

using PISA (https://github.com/shiquan/PISA) pipeline. Reads were further aligned to GRCh38/hg38 human genome using STAR

(v2.7.4a) and sorted by Sambamba (v0.7.0).

For Stereo-seq data, the coordinate identity (CID) sequences on the forward reads were first mapped to the designed coordinates

of Stereo-seq chip. Reads with molecular identifiers (MID) containing N bases or more than 2 bases with a quality score below 10

were filtered out. CID andMID associated with each readwere included in the read header and the remaining readswere then aligned

to GRCm38/mm10 mouse genome using STAR (v2.7.4a). These procedures allowed the generation of a CID-containing expression

profile matrix.

Quality control and data integration
Wefirst executed data quality control with the following criteria: 1) for the human andmouse datasets, we retained cells with less than

5�10% mitochondrial gene counts, more than 600 genes and fewer than 6000�8,000 genes; 2) macaque cells with less than 15%

mitochondrial gene counts, more than 600 gene and fewer than 5000 genes were preserved for data integration; 3) exclusion of dou-

blets for all datasets. Next, we aligned the orthologous transcripts across species with BiomaRt (v0.9.1) package,64 employed ca-

nonical-correlation analysis to correct batch effects and integrated data from different species and across distinct developmental

stages in a common embedding using a standard Seurat integration workflow.65 We used the ‘‘FindIntegrationAnchors’’ function

to identify ‘‘anchors’’ and the ‘‘IntegrateData’’ function to merge filtered datasets. To ascertain the robustness and consistency of

our integrated results, we employed multiple integration methods, including RPCA, fastMNN, and Harmony algorithms, via the

SeuratWrappers (v0.3.1) package. After data integration, we removed cells from adjacent brain regions such as thalamus and

midbrain by detecting the expression of region-specific genes (e.g. TCF7L2, OLIG3, GBX2, GATA3, FOXA2 and SLC6A3). Using

the integrated single-cell data matrix, we performed principal components analysis and computed the first 50 principal components

for dimensionality reduction with uniform manifold approximation and projection (UMAP).

Dimensionality reduction and clustering
Using the integrated single-cell data matrix that encompasses 416,536 qualified cells, we identified 2,000 highly variable feature

genes, conducted principal component analysis (PCA) and selected the top 50 principal components for dimensionality reduction

with uniform manifold approximation and projection (UMAP). A shared nearest neighbor (SNN) graph-based algorithm was applied

for unsupervised clustering analysis. These clusters were compared pairwise to pinpoint cell type-specific genes and the cell iden-

tities were ascertained by cross-referencing their marker genes. Next, we further excluded neural progenitors and neurons from the

developing thalamus and midbrain using specific marker gene expressions. For example, OLIG3 exhibits specific expression in

thalamic progenitor cells, while TCF7L2, GBX2 and GATA3 are notably enriched in the developing thalamus. After the cell filtering

process, a final dataset comprising 351,742 cells was retained to comprehensively map the developmental landscape of human

and mouse hypothalamus. The subclustering process focused on RGCs, IPCs, all postmitotic neurons, neuroendocrine neurons

and dopamine neurons, which were subsetted and reclustered at an optimal resolution.
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Differential gene expression analysis
To identify differentially expressed genes (DEGs) that are enriched in distinct cell types or neuronal subtypes, we performed pairwise

comparisons and used ‘‘FindAllMarkers’’ function with Wilcoxon rank-sum test in Seurat, which returned logarithmic fold-changes

(FC) of the average gene expression among groups and adjustedP values for each gene. Our criteria for designating cell type-specific

DEGs included log2FC > 0.5, adjusted P value < 0.05 and expression ratio > 10%. For normalization, we utilized z-score scaling in

Seurat to standardize the data to a Gaussian distribution. Within the identified DEG list, we further curated transcription factors (TFs)

and primate-specific genes (PSGs), defining them as cell type-specific TFs or PSGs.

The human, macaque and mouse datasets were split to ascertain conserved and species-specific signature genes for each cell

class. We randomly sampled 1,000 cells from each cell class to reduce the effect of varying cell numbers between species, applied

log-normalization for each dataset and employed ‘‘FindAllMarkers’’ function to identify cell class-specific signature genes for each

species. To differentiate conserved from divergent marker genes, we used the formula CGc = ðHc XMc XNcÞ for designating

conservedmarker genes in cell class c andDGðS1dÞ = RðGðS2dÞWGðS3dÞÞGðs1dÞ for divergent marker genes specific to cell class d in spe-

cies S1. Here, H,M and N represent human, macaque and mouse, respectively, while Gðs1dÞ, Gðs2dÞ and Gðs3dÞ represent species-
specific genes for d cell class.

Gene ontology (GO) analysis
Themost significantly differentially expressed gene sets were selected for GO enrichment analysis. In this study, we employed either

clusterProfiler software (v4.0)66 or Metascape,67 a web-based gene set analysis toolkit, to annotate transcriptional programs specif-

ically enriched in various cell types and developmental stages. Functional annotation of cell type-specific gene sets was achieved by

applying the hypergeometric test, with a significance threshold set at P < 0.05. Human- andmouse-specific genemodules were sub-

jected to GO enrichment analysis, followed by functional protein association network analysis using STRING (https://string-db.org/)

that is a biological database and web resource specializing in predicted protein-protein interactions.

Pearson correlation analysis
To assess the conservation of cell types across different species, we first identified the top 2000 highly variable genes that are one-to-

one orthologs across different species, generated pseudo-bulk matrices ‘‘gene set 3 cell type’’ for each species and used a gene-

specificity index to calculate cross-species pairwise correlation between cell clusters.76 Within a set of cell types (C), the specificity

index (Sg;c) of a gene (g) for a cell type (c) is defined as the ratio between the expression level of gwithin c (gc) and themean expression

of g across C:

Sg;c =
gc

1

N

P
i˛Cgi

whereN is the number of cell types inC. We further calculated pairwise Spearman rank order correlations with the gene-specificity

matrices determined as above, identifying correlated clusters across datasets.

To determine the RGC-IPC and IPC-neuron kinships, we used cosine similarity algorithm68 to designate cell subtype-specific

genes, computed the mean expression of these signature genes for each cell subtype and thereby yielded pairwise matrices

(gene set3 cell subtype) with a common gene set. We transformed thesematrices into gene-specificitymatrices and then calculated

pairwise cluster correlations. Significance for correlation coefficients was determined with a permutation test.

Cross-species cell type correlation
To assess cross-species cell similarity, we employed MetaNeighbor (v1.9.1), a computation tool that quantifies the degree to which

cell types replicate across datasets, to identify clusters with high transcriptomic similarity.69 MetaNeighbor provides a performance

score, which is the mean area under the receiver operator characteristic curve (AUROC), to quantify the similarity between cell-type

pairs. We identified 2,000 variable features genes (1:1:1 orthologs) from the integrated dataset and computed AUROC scores using

the ‘‘MetaNeighbourUS’’ function with these genes. For a given gene set, this approach generates a cell-cell similarity network by

calculating Spearman correlation between all cells across the genes within the set. The network is then ranked and standardized,

ensuring that all values fall within the range of 0 to 1. Each pairwise comparison between cell clusters is assigned an AUROC score,

which varies from 1 (signifying a high similarity) to 0 (indicating a low similarity).

Developmental trajectory analysis
We performed pseudotemporal analyses to decipher the developmental trajectory of hypothalamic cell lineages and sublineages

using Monocle 3 (v1.3.0),77 Slingshot (v2.12.0),33 scVelo(v0.2.4)70 and URD (v1.1.1)71 softwares. To confirm the cascade diversi-

fying model in the developing human hypothalamus, we subsetted human RGCs, IPCs and neurons to generate a specialized da-

taset, performed gene expression normalization by log-transformation and then employed Monocle 3 to assign UMAP coordinates

from the Seurat object to the ‘cell_data_set’ (CDS) object for trajectory inference. For Slingshot analysis, we first used ‘‘as.Single-

CellExperiment’’ function to transform Seurat objects into SingleCellExperiment objects. We then inferred cell lineages with default

parameters and visualized the trajectories by projecting them onto a UMAP plot. For scVelo analysis, we constructed spliced and

unspliced count matrices, loaded the input data into Python, pre-processed it with the ‘‘scv.pp.moments’’ function and then
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computed RNA velocity using the stochastic model. Genes with fewer than 20 counts in both spliced and unspliced matrices were

excluded from the analysis. The RNA velocity streams across all cells were visualized by projecting a vector field on the UMAP

embedding.

To estimate pseudotime for T-zone and M-zone lineages, we employed the ‘‘learn_graph’’ function in Monocle 3 to construct a

principal graph, designated neural progenitors as the root node and subsequently applied the ‘‘order_cells’’ function with default pa-

rameters to compute pseudotime values and predict lineage progression path. Alternatively, we took advantage of URD,71,78 a tool

designed for reconstructing transcriptional trajectories, to infer differentiation paths. In brief, we computed transition probabilities

based on transcriptomic distance between cells, generated a diffusion map using ‘‘calcDM’’ function in URD and specified ‘root’

and ‘tip’ cells to infer trajectory. Using the ‘‘floodPseudotime’’ function, we determined the distance of each cell from the root and

assigned a pseudotime value to each cell within the lineage.

Gene module scoring
Scoring gene module represents a simple yet powerful approach for assessing the intensity of biological signals within a transcrip-

tome, typically linked to a specific cell type, cellular component or biological process. As single-cell atlases provide specialized gene

sets to define the transcriptional features of distinct cell types, public databases (e.g. MSigDB) have likewise supplied an array of

well-recognized gene modules associated with diverse cellular components and biological processes. To evaluate the expression

robustness of a specialized gene set in a cell group, we calculated the gene module scores with the following formula:

MSjðiÞ = mean½ErðGj; iÞ�-- mean
h
Er
�
GCtrl

j ; i
�i

:

whereMS is themodule score for individual cells, j is the input gene, i is the individual cell, Er is the relative expression of genes, Gj is

the module gene set and Gj
Ctrl is the control gene set. Specifically, the MSj(i) for i cell was determined by subtracting the average

relative expression of genes in Gj from the average relative expression of a control gene-set (Gj
Ctrl). To define the control gene

set, we binned all genes into 25 groups based on their aggregate expression levels and randomly selected 100 genes from the

same expression bin for each gene in Gj. The gene modules used in this study were curated from either public databases (e.g. syn-

aptic components or oxidative phosphorylation process) or defined using signature genes (e.g. RGC subtype markers) specific to

each cell type. Using the ‘‘AddModuleScore’’ function in Seurat, we quantified the genemodule scores for various cell groups divided

by developmental timing or cell types.

Stage correspondence analysis
We established the correspondence between human andmouse developmental stages based on the transcriptome of hypothalamic

cells using the recently published TranscriptomeAgemethod.4 First, we performed a linear transformation on the human (PCW5-20)

andmouse (E10-P0) datasets across different developmental stages usingMin-Max normalization approach, given public databases

suggesting that mid-fetal stage at PCW20 in human best matched mouse perinatal (P0) stage.79 Second, the transformed ages of

human andmouse hypothalamic cells were regressed against the average expression of orthologous genes to identify feature genes

using a ridge regression model. We applied this regression model with the glmnet R package (v4.1.6), with a = 0 and optimal l value

identified by ten-fold cross-validation using the ‘‘cv.glmnet’’ function. Geneswith coefficients of 0 in the human andmouse cells were

excluded and ranked based on the absolute value of the coefficient. Third, we conducted lasso regression analysis between the hu-

man ages (x) and the average expression matrix of feature genes (y), which consist of the overlapped top-ranking 12,000 genes iden-

tified by the ridgemodel in human andmouse datasets. The value of lwas similarly selected through ten-fold cross-validation. Lastly,

we predicted the transcriptome age for both human and mouse hypothalamic cells and established their correspondence across

multiple developmental stages. We further subdivided human ages into three stages, as described in Kang et al.80: stage 1 (embry-

onic stage), stage 2 (early-fetal stage) and stage 3 (mid-fetal stage).

Inference of lineage tree and lineage factors
To reconstruct the neurogenic lineage tree in the developing hypothalamus, we developed a computational tool integrating cosine

similarity algorithm, gene specificity indexing and Spearman correlation analysis. During hypothalamus neurogenesis, RGCs adopt a

conserved strategy for multipotential differentiation and hierarchically give rise to IPCs and nascent neurons. Along the lineage hier-

archy, we isolated RGCs, IPCs and neurons from the integrated dataset and performed reclustering analysis for eachmajor cell class.

This process resulted in the subdivision of RGCs into 12 subtypes, IPCs into 14 subtypes and neurons into 22 subtypes, each char-

acterized by distinct molecular signatures. To more accurately profile the transcriptional feature of each cell subtype, we applied a

cosine similarity-based approach to identify gene signatures for each subtype of RGCs, IPCs and neurons. Cosine similarity com-

pares the orientation of two n-dimensional vectors using the cosine value of the angle between the vectors in the vector space.Within

the cell space, each dimension corresponds to a cell, a gene’s vector comprises n-basis and the basis coordinates reflect the gene

expression level in each cell. The cosine similarity between two genes is equivalent to the cosine value of the angle between their

representative vectors in the cell space. To identify signature genes for a dataset ofN cells (clustered intoK groups) withM expressed
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genes, this algorithm creates an artificial marker gene lk for group k (Gk ; k ˛ f1; :::;KgÞ. The representative vector for each gene

(gi; i ˛ f1; :::;MgÞ will be compared with the representative vector of lk :

cosðgi; lkÞ = cosineðqÞ =
gi$lk

kgik3 klkk =

PN
j = 1 xjiljkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j = 1 xji2
q

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j = 1 ljk2

q

where xji is gi’s expression value in the cell j (cj; j ˛ f1; :::;NgÞ and ljk is lk ’s expression value in cj, ljk = 1 if cj ˛Gk and ljk = 0 if cj;
Gk . Given that greater similarity in gene expression patterns results in a smaller angle, we evaluated the scores for each gene in each

cell group with the following formula:

cos scoreðgi;GKÞ = cosðgi; lkÞ � cosðgi; lkÞ2
cosðgi; lkÞ2+m3

P
t˛ f1;.;Kg;tskcosðgi; ltÞ2

where mR0 is the penalty factor and by default m = 1. We defined the genes with cosine scores greater than 0.1 as signature

features for each cell subtype. A gene-specificity index as aforementionedwas further used to calculate pairwise correlation between

cell clusters across lineage hierarchy. After generating the gene-specificity matrices for each major cell classes, we merged the

matrices that would be compared pairwise and quantified the Spearman correlation coefficients (SCC) for each pair of cell subtypes

from two different datasets, which largely reflect the RGC-IPC and IPC-neuron kinships. To infer lineage relationships, we set a

threshold for correlation coefficients: SCC > 0.37 & P value < 0.05 to link RGC and IPC subtypes, and SCC > 0.52 & P value < 0.05

for linking IPC and neuronal subtypes. The hypothalamic lineage tree was visualized by ggraph (v2.1.0).

To identify lineage-specific TFs that potentially mark, specify and maintain cellular identities, we split the cells in the hypothalamic

lineage tree into P-, A-, T- and M-zone lineages (vertical partition), with each lineage containing RGCs, IPCs and neurons. We em-

ployed cosine similarity algorithm to identify lineage-specific genes, screened TFs enriched in each lineage, and selected the top TFs

with COSG scores greater than 0.1 as candidate lineage factors. Simultaneously, we used the same computational tool to identify

gene signatures for each subtype of RGCs, IPCs and neurons along the lineage hierarchy (horizontal partition). A final list of lineage

factors was obtained by intersecting lineage-specific TFs with specific marker genes for different subtypes of RGCs, IPCs and neu-

rons within individual lineages.

Shannon entropy analysis
Single-cell entropy explains much of the global variability in gene expression and serves as a simple metric that can reflect the tran-

scriptomic diversity of a cell type or the differentiation diversity of a cellular lineage.81 To assess the inter-cell transcriptomic hetero-

geneity in homologous neuronal subtypes across species, we computed and compared single-cell entropy for each subtype of hu-

man and mouse postmitotic neurons. We first identified 2000 highly variable genes (HVGs) in each species and performed random

sampling of cells from each neuronal subtype to have an equivalent cell number between humans and mice. After conducting UMAP

dimensionality reduction with the down-sampled data, we subdivided the cells from each subtype into m bins (m<20) based on their

one-dimensional UMAP values, calculated the average expression of HVGs in each bin, and further split the bins into n groups (n<15)

as per gene expression levels. Next, we computed Shannon entropy for each HVG in each bin and subtracted the entropy obtained

from randomly permutated data. To ensure robustness, we performed 30 rounds of random permutations and analyzed the average

value of entropy difference (>0.5). The down-sampling process was repeated 100 times, and the distribution of entropy differences

for each neuronal subtype was visualized by violin plots.

Given that progeny cells are apt to acquire the molecular identity via inheriting TF codes from their progenitor cells in a cellular line-

age, we determined to compute Shannon entropy for each TF enriched in individual lineages. We divided the hypothalamic neuronal

lineages into P-, A-, T- and M-zones and identified all TFs from the top 1,000 HVGs specifically enriched in each lineage. To assess

the spectrum of lineage diversification, we analyzed Shannon diversity index for each lineage:

HðXjÞ = �
Xn

i = 1
PðxijÞlog PðxijÞ

Wherein the expression of gene j was divided into n bins based on its expression level, PðxijÞ denotes the probability of gene j with

expression in bin i. We normalized the Shannon diversity index and visualized the results using a radar map.

Spatial transcriptomic analysis
Scanpy provides a solution for spatial transcriptomic data analysis and visualization. Using the Stereo-seq data from serial coronal

sections of the E13.5 mouse hypothalamus, we examined the spatial expression pattern of region-specific marker genes (e.g.

Nkx2-1, Arx, Pax6, Six6, Tbx3, and Barhl1) using the ‘‘sc.pl.spatial’’ function in Scanpy, enabling the generation of scatter plots in

spatial coordinates. To visualize the spatial distribution of different cell subtypes, we took advantage of Tangram (v1.0.4)72 to transfer

the gene expression pattern of each cell type from sc/snRNA-seq data to spatial profiling data. Prior to spatial alignment, we

identified the molecular signatures specific to each subtype of RGCs, IPCs and neurons by COSG software, with a COSG score

threshold set at > 0.1. Next, we employed these molecular signatures as input training genes for Tangram, and applied the

‘‘map_cells_to_space’’ function with themode set to ‘‘clusters’’ to obtain a cell-type localization prediction. This procedure simulates

the spatial correlation between each training gene in the sc/snRNA-seq data and the Stereo-seq data, and rearranged the single-cell
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expression profiles of each cell type to spatial dimensions. While Tangram generated normalized probabilities of cell types in the Ste-

reo-seq data, we selected cells with probabilities exceeding the 98th percentile to ensure data quality.

Functional validation of inferred sublineage
To corroborate the inferred neuronal sublineages, we genetically labeled Tbx3+ progenitor domain using Tbx3-CreERT2::Ai9mice at

E9.5�E10.5 and traced the fate of their progeny cells at P14. Our recent study profiled the identities of traced neurons by scRNA-seq

at P14,8 which was used as query dataset for lineage tracing datamapping.We further subset cells within the T-zone lineage from our

hypothalamic lineage tree and defined it as a reference dataset. After log-normalization and variable feature identification of both

datasets, we identified anchors between datasets using the ‘‘FindIntegrationAnchors’’ function and employed ‘‘MapQuery’’ function

to project query cells onto reference UMAP feature plot. To investigate the potential role of lineage factors (e.g. Tbx3) in specifying

neuronal fate, we integrated and used single-cell datasets from the hypothalamus of control and Tbx3-deficient mice as a reference8.

The cells from the inferred T-zone lineage were randomly down-sampled and reversely mapped onto the reference UMAPs using

‘‘MapQuery’’ function within the Seurat workflows.

Cell abundance and compositional analysis
Cross-species comparison

To identify human-specific or human-enriched neuronal subtypes, we conducted comparative analysis using Milo, a versatile and

scalable statistical framework that employs differential abundance testing by assigning cells to partially overlapping neighborhoods

on a k-nearest neighbor (KNN) graph.73 We first projected the gene expression matrix for each cell onto the leading principal com-

ponents after log-transformation, and computed Euclidean distances between cells in this reduced space to identify the most similar

cells for each cell. Second, we defined cell neighborhoods by grouping sets of interconnected cells on the KNN graph using default

parameters. To counteract the differences in sampling depth, we normalized neighborhoods with trimmedmean of M-values. Lastly,

we quantified neighborhood counts and fit a negative binomial generalized linear model to the counts for each neighborhood. Sig-

nificance for each neighborhood was assessed by quasi-likelihood F-test. In summary, we quantified the abundance of each

neuronal type across species by constructing KNN graph, defining cell neighborhoods, counting cells in neighborhoods and differ-

ential abundance test in neighborhoods.

Cross-sample comparison

To reliably assess changes in cell composition due to Tbx3 deletion in the hypothalamus, we employed three bioinformatic ap-

proaches for statistical analysis of cell type abundance changes as previously described8: scCODA (v0.1.9), Cacoa (v0.4.0), and

Speckle (v0.0.3). scCODA selects the cell type with the least change as a reference and infers shifts in the relative proportions of

all other cell types across samples with an FDR < 0.05 threshold. Cacoa determines significance based on random resampling of

cells and replicates across the dataset in each sample. Speckle evaluates differences in cell type proportions between different sam-

ples by multiple hypothesis testing with Bonferroni correction. Neuronal subtypes with significantly reduced proportion in the Tbx3-

deficient hypothalamus compared to controls were identified as lost subtypes.

Non-negative matrix factorization (NMF)
To decipher the transcriptional programs directing lineage progression in the developing hypothalamus, we adapted a NMF proced-

ure to analyze the single-cell data of human andmouse neuronal lineages. We first performed trajectory analysis of P-, A-, T-, M- and

PTh-zone lineages using Monocle 3 and subdivided the cells in each putative lineage into 10 pseudotemporal bins. To dissect the

gene expression dynamics during lineage progression, we applied the NMF framework, available at https://github.com/YiqunW/

NMF, to each pseudotemporal bin. This process involved decomposing a gene expression matrix (with dimensions M genes 3

N cells) into two matrices: a matrix G (M genes 3 K modules), and a matrix C (K modules 3 N cells). Matrix G assigns a weight to

each gene for each gene module, whereas matrix C associates each gene module with a level for each cell. We determined the

optimal number of gene modules (K value) independently for each dataset as follows: we tested K values within the range of 5 to

13 and repeated the NMF process 5 times for each K value with random initial conditions. To ensure the data reliability, we evaluated

the consistency among results from repeated NMF runs and considered the cophenetic coefficient. A K value with low inconsistency

and a high cophenetic coefficient was selected for each pseudotemporal bin matrix. Next, we integrated genemodules from different

lineages and pseudotemporal bins, computed the Spearman correlation between gene modules and performed hierarchical clus-

tering analysis, which identified 10 meta-programs for both human and mouse NMF results. For each metagene-program, genes

were ranked based on their NMF scores within gene modules. We selected the top 30 genes from each gene module and combined

these genes together to define eachmeta-program. Furthermore, we conducted hypergeometric testing on the top 40 genes with the

highest frequency in each meta-program (significance defined by FDR-adjusted P < 0.05) to indicate the distinct features of each

meta-program, followed by GO functional annotation.

Identification of homologous cell types
To estimate cell-type homology, we independently clustered human and mouse hypothalamic neurons across various develop-

mental stages using the Louvain algorithm.We clustered the aligned embedding output fromSeurat and identified human andmouse

neuronal subtypes that co-clustered.82 Specifically, we first constructed a weighted graph based on the Jaccard similarity of the

nearest neighbors for each neuronal subtype. Next, we employed Louvain community detection to identify clusters by optimizing
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https://github.com/YiqunW/NMF
https://github.com/YiqunW/NMF


ll
Resource

Please cite this article in press as: Chen et al., Transcriptional conservation and evolutionary divergence of cell types across mammalian hypothalamus
development, Developmental Cell (2025), https://doi.org/10.1016/j.devcel.2025.03.009
the global modularity of the partitioned graph. For each pair of human and mouse neuronal subtypes, the overlap was defined as the

sum of the minimum proportion of cells in each original subtype that overlapped within each aligned cluster. This approach consis-

tently identified pairs of human andmouse clusters that co-clustered within one or more aligned clusters. The degree of cluster over-

lap, ranging from 0 to 1, was visualized as a heatmap. Finally, cell-type homologies were defined based on the overlap patterns

observed between clusters.

Label transfer
To determine cell identities across different datasets, we used label transfer from annotated reference data. Specifically, each query

and reference dataset were preprocessed using Seurat’s SCTransformmethod, and the top 3,000 highly variable orthologous genes

were selected. Label transfer was then performed using the first 30 principal components, with anchor points between the reference

and query datasets identified by the ‘‘transferData’’ function. This allowed for the projection of PCA structure from the reference data.

Finally, we generated a UMAP representation with the ‘‘RunUMAP’’ function and mapped both UMAP coordinates and annotations

from the reference to the query data using the ‘‘MapQuery’’ function.

Identification of regulons
Cell type-specific regulatory network inference (CESNI)

Cell type-specific gene expression patterns results from the activity of transcriptional gene regulatory networks (GRNs), which es-

tablishes connections betweenmaster TFs, signaling proteins and target genes. To reveal potential GRNs for each neuronal subtype,

we first conducted differential gene expression analysis to identify cluster biomarkers with ‘‘FindAllMarkers’’ function in Seurat and

selected the top 50marker genes of each subtype for subsequent analysis. Among these biomarkers, we considered TFs as potential

regulators and retrieved DNA sequences encompassing 2000 bp upstream and 500 bp downstream of the transcriptional start site

for each selected marker gene. Using TF binding motifs inferred by the CHIP-seq database (https://github.com/GreenleafLab/

chromVARmotifs), we employed the ‘‘matchMotifs’’ function within motifmatchr package (v1.22.0) to establish connections between

the regulators and target genes based on accessible sequence-specific motif matches (https://github.com/GreenleafLab/

motifmatchr). The motif matching score was calculated by:

ScoreðuÞ =
Xm
j = 1

log
Pðj;ujÞ
quj

where m is the positionally weighted pattern, j is the position, u is the DNA sequence, uj is sequence position, q is background

probability, quj is the background probability in specific sequence position. We set ScoreðuÞ > 0.5 as a threshold to establish the reg-

ulatory relationship between TF and target genes.

Single-Cell Regulatory Network Inference (SCENIC)

We further identified GRNs (i.e. regulons) for each neuronal subtype with the SCENIC (v0.12.0) pipeline.74 In brief, we generated the

gene co-expression modules that encompass TFs and potential target genes for each cell, inferred regulons by leveraging a motif

database with genome-wide rankings, scored the activity of each regulon using the area under the recovery curve and determined

the regulon’s cell-type specificity with regulon specificity score (RSS). We selected the top 6 regulons for each neuronal subtype to

create a regulon network and quantified their species specificity.

GWAS enrichment analysis
To evaluate the enrichment of genes associated with human diseases and traits in each dopamine neuronal subtype, we performed

linkage disequilibrium score (LDSC) regression analysis as described previously (https://github.com/bulik/ldsc/wiki/LD-Score-

Estimation-Tutorial). We obtained GWAS (genome-wide association studies) summary statistics for quantitative traits related to neu-

ral and metabolic disorders from previous literatures,83 including epilepsy, schizophrenia, neuroticsm, major depressive disorder,

bipolar disorder, psychiatric disorders, schizophrenia, autism, Parkinson’s disease, bodymass index (BMI), height, waist-to-hip ratio

(WHR), high cholesterol, basal metabolic rate, fasting glucose, high density lipoprotein (HDL), low density lipoprotein (LDL), triglyc-

eride, diabetes, intelligence and smoking habits. We pre-processed summary statistics to the standard format using the LDSC pipe-

line,84 followed by 1) identification of DEGs with adjusted P < 0.05 and log2FC > 0.5 in each neuronal subtype; 2) creation of anno-

tation files for 22 chromosomes in each cell subtype with the ‘‘make_annot.py’’ function and using the options ‘‘–bed-file, –bimfile

1000G.EUR.QC.bim’’ and ‘‘–annot-file’’; 3) calculation of LD scores with the ‘‘ldsc.py’’ function and using the options ‘‘–l2, –bfile

1000G.EUR.QC, –ld-wind-cm 1, –annot, –thin-annot, and –print-snps’’; and 4) performance of regression using the ‘‘ldsc.py’’ script

with the ‘‘–h2-cts flag’’. The association of each neuronal subtypewith the traits was determined by reporting the coefficientP-values.

QUANTIFICATION AND STATISTICAL ANALYSIS

General statistical analysis
All statistical details of the experiments can be found in the figure legends and/or text. Statistical analyses were performed using

GraphPad Prism, Microsoft Excel, and R software. Data collection and analysis were blinded in this study. Grouped data are pre-

sented as mean ± standard error of the mean (SEM). Statistical significance was assessed using unpaired two-tailed Student’s
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t-test or permutation test. Statistical significance is indicated as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. All experiments were

independently repeated at least three times.

Quantification of neuronal number and neurite length
To quantify the number of GnRH neurons, human and mouse brain tissues were serially sectioned into 40-mm slices and immuno-

stained. The total number of GnRH neurons on each slice was counted by LAS X (v3.0.11). Each group included two human fetal

brains and at least three mouse brains. Axonal and dendritic length of cultured neurons expressing EGFP was quantified using

ImageJ (v1.53c). To analyze the morphology of neurons transfected with ONECUT1 in vivo, mouse brains were sectioned into

150-mm thick slices with vibratome and imaged with a Nikon A1R MP microscope (Japan). Neurons were reconstructed using the

"Surface" and "Filaments" functions in Imaris (v9.2), which automatically analyzed neurite length. Each group included at least three

mouse brains.
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Figure S1: An overview of sc/snRNA-seq data from the hypothalamus of humans, macaques 
and mice, related to Figure 1. 
(A) Diagram illustrating the developmental stages and genders of samples collected across 
different species. PCW, week post conception, E, embryonic; P, postnatal. 



 

 

(B) UMAP visualization of a total of 416,536 qualified cells collected from the human, macaque and 
mouse developing hypothalamus. 
(C) Feature plots illustrating the expression pattern of genes specific to thalamus and midbrain. 
Thalamic progenitors are characterized by OLIG3 expression, thalamic neurons specifically 
express TCF7L2, GBX2 and GATA3, while midbrain cells display enriched expression of FOXA2 
and SLC6A3 expression. 
(D) Cell annotation in UMAP with hypothalamic cells highlighted within dashed circles. 
Contaminated cells from adjacent brain regions (e.g. thalamus and midbrain) are teased out for 
subsequent analyses. RGC, radial glial cells; IPC, intermediate progenitor cells; AS, astrocytes; 
OPC, oligodendrocyte precursor cells; OD, oligodendrocytes; EC, ependymal cells; GABA, 
GABAergic neurons; GLU, glutamatergic neurons; TC, tanycytes; BC, blood cells; EnC, endothelial 
cells; MG, microglia; VLMC, vascular and leptomeningeal cells; THEx, thalamic cells for exclusion; 
MBEx, midbrain cells for exclusion. 
(E) Bar and box charts showing the cell count, gene number per cell, UMI number per cell and 
mitochondrial gene count per cell for each species across various developmental time points. 
(F) UMAP pots showing the distribution of hypothalamic cells from humans (Hsa, 195,166 cells), 
macaques (Mcf, 25,847 cells) and mice (Mmu, 130,729 cells), color-coded by different 
developmental time points. 
(G) UMAP visualization of integrated datasets using CCA, RPCA, FastMMN and Hormony 
algorithms. 
(H) Heatmaps showing the consistency of cell clustering results across different integration 
methods. 
(I) Feature plots illustrating the expression pattern of FABP7, TUBB3, SLC32A1, SLC17A6, 
NEUROG2, OLIG2, AQP4, FOXJ1 and COL23A1. for each cluster. 
(J) Violin plots showing the expression of conserved cell markers within each cell class across 
different species. 
(K) Histogram showing the relative proportion of cells in each cell class at different developmental 
time points. 



 

 

 
Figure S2: Conserved cell classes across different species and datasets, related to Figure 
1. 
(A) Independent clustering of human, macaque and mouse datasets. 
(B) Correlation analysis of the major cell types across different species.  



 

 

(C) UMAP visualization of the clustering analysis of public fetal human hypothalamus.  
(D) Dot plot showing the conserved marker gene expression for each fetal hypothalamic cell class. 
(E) UMAP visualization of the clustering analysis of public adult human hypothalamus.  
(F) Dot plot illustrating conserved marker gene expression for each adult hypothalamic cell class. 
(G and H) Heatmaps showing common molecular features across our dataset in comparison to 
public fetal (G) and adult (H) hypothalamic datasets.  
(I and J) Correlation analysis of the major cell types between our dataset and public fetal (I) or 
adult (J) hypothalamic datasets.  
(K) UMAP plots showing female and male hypothalamic cells from prenatal and perinatal mice.  
(L) Feature plots illustrating the expression patterns of Xist and Ddx3y in the developing 
hypothalamus of both female and male mice.  
(M) Correlation analysis of the major cell types between female and male mice.  
(N) Heatmaps showing the common molecular features across female and male mice.  
(O) Stacked barplot showing the number of differentially expressed genes across major 
hypothalamic cell types between female and male mice. 
  



 

 

 
Figure S3: Conserved cell classes across different species and sexes, related to Figure 1. 
(A) Heatmap showing the area under the receiver operator characteristic curve (AUROC) scores 
of cell signatures across species. We used Metaneighbor program to compare gene expression 
profiles. Sp, species; Cc, cell classes.  
(B) UMAP plots showing female (up) and male (bottom) hypothalamic cells from both humans and 
mice.  
(C) Heatmaps showing the conserved and species-specific molecular features in each cell type 
from female and male humans and mice.  
(D) Heatmap showing macaque-specific molecular features in each cell type. 
  



 

 

Figure S4: Conserved neurogenic lineage progression and asynchronous gliogenic pace in 
humans and mice, related to Figure 1. 
(A and B) UMAP visualization of the developmental trajectories for neurogenic (A) and gliogenic 
lineages (B) in the human and mouse developing hypothalamus, inferred by Monocle 3, Slingshot, 
and scVelo. Notably, RGCs differentiate into both IPC1 and IPC2, with IPC1 further bifurcating into 
GABAergic and glutamatergic neurons.  
(C) A line chart depicting the stage correspondences of cortical and retinal development between 
mice and humans1. This visualization effectively demonstrates the aligned developmental 
timeframes in both species. Mid-fetal stage at PCW20 in human best matched mouse perinatal (P0) 
stage.  
(D) Dot plots showing the developmental expression dynamics of cell type-specific markers in 
mouse and human RGCs. Transcriptional priming, denoted by mRNA expression of lineage-
specific marker genes such as ASCL1 and NEUROG2 for neuronal differentiation, PDGFRA for 
OPC differentiation, AQP4 for astrocyte differentiation and FOXJ1 for ependymocyte differentiation, 
occurs in RGCs before embarking on the path of differentiation. The asynchronous expression of 
PDGFRA, AQP4 and FOXJ1 between mice and humans are highlighted in colors, suggesting 
asynchronous timing of gliogenesis in different species.  
(E) A schematic diagram illustrating the temporal occurrence of glial cells in the mouse and human 
hypothalamus, with human gliogenesis commencing relatively earlier. 
  



 

 

 
Figure S5: Asynchrony in neuronal maturation between humans and mice, related to Figure 
1. 
(A) Scatter plot depicting the real age (x axis) and the age predicted by TranscriptomeAge (y axis) 
of human and mouse datasets. Real ages were normalized by Min-Max normalization and 
subdivided into three stages: stage 1 (embryonic stage), stage 2 (early-fetal stage) and stage 3 



 

 

(mid-fetal stage). We applied a lasso regression model to predict the transcriptome age of each 
sample.  
(B) Schematic showing the corresponding developmental stages between human and mouse 
hypothalamus.  
(C) Dot plots showing the developmental stage-specific biological processes in both humans and 
mice. The human-specific enrichment of calcium homeostasis and synaptic maturation is 
highlighted in colors, suggesting the asynchronous neuronal maturation in the human and mouse 
developing hypothalamus. PN, postnatal stage.  
(D-G) Dot plots showing the expression dynamics of calcium channels (D), glutamate and GABA 
receptors (E), neurotransmitter transporters (F) and genes involved in synaptic maturation (G) in 
mouse and human hypothalamic neurons across different developmental stages. 
  



 

 

 
Figure S6: Identification, annotation and validation of hypothalamic progenitor domains 
using spatial transcriptomic data, related to Figure 2. 
(A) Spatial visualization of Nkx2-1, Arx, Pax6, Sim1, Tbr1, Barhl2, Pitx2, Tbx3, Six6, Nkx2-2, Lhx9, 
Lhx3 and Gbx2 expression in E12.5 sagittal brain sections using the mouse organogenesis 
spatiotemporal transcriptomic atlas (MOSTA)2. PTh, prethalamus; P, preoptic zone; A, anterior 



 

 

zone; T, tuberal zone; M, mammillary zone; SM, supramammillary zone; TE, thalamic eminence; 
ID, extrahypothalamic diagonal; Tha, thalamus; Pit, pituitary.  
(B) Subclustering and spatial annotation of early neural progenitor cells at stages 1 and 2. Cycling 
cells (nP7 and nP8) without spatial identities, anterior neural ridge (ANR) cells (nP10) and mucosal 
epithelial (MuE) cells (nP13) were removed for subsequent analysis.  
(C) Heatmap showing the marker genes enriched in distinct neural progenitor domains.  
(D) Stacked bar chart showing the proportion of cells across various cell cycle phases in each 
cluster of neural progenitors.  
(E) Spatial visualization of marker gene expression for nP10 (marked by Fgf17), nP13 (denoted by 
Aldh1a3) and nP6 (featured by Dlx2 and Sp9) in E12.5 sagittal mouse brain sections. Despite that 
neural progenitors in nP6 cluster are predominantly proliferative, they display a specific spatial 
distribution within the A zone. 
  



 

 

 
Figure S7: Molecular features of distinct hypothalamic neural progenitor domains, related 
to Figure 2. 
(A) Dot plot showing the expression of putative region-specific marker genes (e.g. PAX6, NKX2-1, 
TBX3, SIX6 and BARHL2) in the 9 hypothalamic and 3 prethalamic progenitor domains.  
(B) UMAP visualization of neuronal progenitor domains identified from public fetal datasets.  



 

 

(C) Correspondence between our data and public fetal data by label transfer. Three subtypes of 
neural progenitors identified in our study are absent in the public data.  
(D) UMAP plots showing the integration and clustering of early RGCs from both our study and 
public fetal data.  
(E) Stacked bar plots illustrating the ratio of cells across our dataset and public datasets in various 
neural progenitor subtypes, with arrowheads marking the RGC subtypes absent in the public data. 
(F) Heatmaps showing the molecular features of distinct progenitor domains shared between our 
study and public fetal data.  
(G) UMAP visualization of macaque progenitor domains.  
(H) Dot plots showing marker gene expression across distinct macaque progenitor domains.  
(I) Conserved TFs expressed in macaque progenitor domains.  
(J) Inter-species correspondence of RGC subtypes between humans and macaques by label 
transfer.  
(K-M) Dot plots showing robust and consistent patterns of signature gene expression in distinct 
neural progenitor domains at different developmental stages. 
  



 

 

Figure S8: Segmentation of hypothalamic progenitor domains by FOX gene family, related 
to Figure 2. 
(A) Heatmap showing the specific expression of distinct TF sets in various neural progenitor 
domains.  
(B) Spatial visualization of conserved region-specific marker genes (Foxg1, Nkx2-1, Pou2f2, Dlx5, 
Tbx3, Pou3f1, Sp5 and Sim2), along with schematic diagrams indicating the spatial annotation of 
each hypothalamic progenitor domain.  
(C) Schematic diagram showing the spatial distribution of hypothalamic neural progenitor domains. 
(D) Feature plots showing the expression of various members of the FOX gene family within specific 
progenitor domains.  
(E) Spatial transcriptomic analysis showing the expression of Foxg1, Foxd1, Foxb1 and Foxa1 in 
E11.5 and E13.5 mouse brain sections.  
(F) Spatial visualization of Foxd1, Foxa1 and Foxa2 expression patterns in E11.5, E12.5 and E13.5 
mouse brain sections.  



 

 

(G) Sample images showing the spatial expression of SHH and FGF10 mRNA in a sagittal view of 
PCW6 human fetal brain sections. FGF10 was restricted in pT2 domain and mutually exclusive 
with SHH in the hypothalamic floor plate. Scale bar, 500 μm. 
  



 

 

 
Figure S9: Identification of IPC subtypes, related to Figure 3. 
(A) Dot plot showing the molecular signatures in each IPC subtype.  
(B) Heatmap demonstrating the subtype-specific TFs among IPCs.  
(C) UMAP visualization of IPC subtypes identified from public fetal data.  
(D) Correspondence between our data and public fetal data by label transfer. Four IPC subtypes 
identified in our study are absent in the public data.  
(E) Heatmaps showing the similar molecular features of distinct IPC subtypes in our study and 
public fetal data.  
(F and G) UMAP plots showing the integration (F) and clustering (G) of IPCs from both our study 
and public fetal data.  
(H) Stacked bar plots illustrating the ratio of cells across our dataset and public datasets in various 
IPC subtypes, with arrowheads indicating subtypes that were absent in the public data.  
(I) Correlation analysis of RGC and IPC subtypes that were missing in the public data.  



 

 

 
Figure S10: Identification of neuronal clusters for lineage inference, related to Figure 3. 
(A) Dot plot illustrating the signature genes in each neuronal subtype.  
(B) Independent clustering of neurons from public fetal data.  



 

 

(C) Correspondence of neuronal subtypes between our study and public fetal data by label transfer. 
(D) Heatmaps showing the similar molecular features of neuronal subtypes between our study and 
public fetal data.  
(E and F) UMAP plots showing the integration (E) and clustering (F) of neurons from our study, 
public fetal and adult data.  
(G) Stacked bar plots illustrating the ratio of cells across our dataset and public datasets in various 
neuronal subtypes.  
(H) Correspondence of neuronal subtypes between our study and public datasets by label transfer 
following data integration.  
(I and J) Heatmaps showing the molecular features shared across different datasets (I) and 
developmental stages (J). 
 
  



 

 

 
Figure S11: Inference of neuronal lineages, related to Figure 3. 
(A) Modular transcriptomic analysis revealing that the region-specific gene modules in RGCs are 
transmitted to their progeny cells including both IPCs and neurons at the cell subtype level. 
Signature gene sets for each progenitor domain were identified by cosine similarity algorithm, with 
COSG score > 0.1.  
(B and C) Heatmaps showing the pairwise correlation of RGC and IPC subtypes (B), as well as 
IPC and neuron subtypes (C). The cell subtype pairs with strong correlation coefficients (P value < 
0.05) were marked with a “+” sign.  



 

 

(D) Independent clustering of RGCs, IPCs, and neurons from public fetal data.  
(E) Pairwise correlation of RGC, IPC and neuronal subtypes identified from public fetal data.  
(F) Computational reconstruction of hypothalamic neuronal lineage tree using public data.  
(G) Clustering analysis of RGCs and neurons public fetal human spinal cord data.  
(H) Inference of neuronal lineage tree for the developing human spinal cord. 
  



 

 

 
Figure S12: Spatial transcriptomic and trajectory analyses of hypothalamic sublineages, 
related to Figure 3. 
(A) Serial coronal images showing the spatial expression of Nkx2-1, Arx, Pax6, Six6, Tbx3 and 
Barhl1 in the mouse hypothalamus at E13.5. These coronal brain sections (n=17), ordered along 
the anterior-posterior (AP) axis, were subjected to Stereo-seq for spatial transcriptomic analysis. 
(B) Spatial visualization of signature gene modules for each progenitor and neuronal subtype within 
T- and M-zone lineages in E13.5 mouse hypothalamus.  
(C) Subclustering analysis of cells in the inferred T-zone (left) and M-zone (right) lineages.  
(D and E) Pseudotemporal analysis of T-zone (D) and M-zone (E) lineages using monocle 3 and 
URD approaches. Solid and dashed lines show the differentiation paths of neural progenitors in T- 
or M-zones. 
  



 

 

 
Figure S13: Inference and functional validation of potential lineage factors, related to Figure 
3. 
(A) Crown diagrams showing the candidate lineage factors specifying distinct hypothalamic 
sublineages.  



 

 

(B and C) Crown diagrams demonstrating the functional diversification (B) and redundancy (C) of 
potential lineage-specific TFs in individual multigene families.  
(D) Representative images showing genetic labeling of pT2 progenitor domain by tdTomato and 
spatial distribution of progeny neurons (co-stained with Nkx2.1) using Tbx3-CreERT2::Ai9 mice, 
which were induced with tamoxifen at E10 and sacrificed at E11 (left) or P30 (right). LH, lateral 
hypothalamus; DMH, dorsomedial nucleus; VMH, ventromedial nucleus; TU, tuberal nucleus; ARC, 
arcuate nucleus. Scale bars, 200 and 50 μm (left panels); 1000 and 200 μm (right panels).  
(E) Mapping of all single-cell data from Tbx3-derived lineage onto UMAP plot that represents T-
zone lineage. Experimentally traced neuronal subtypes are color-coded.  
(F) Sample replicates of snRNA-seq data from both control and Tbx3 conditional knockout (CKO) 
mice at P14. We bred Nkx2.1-Cre::Tbx3F/F mice to delete Tbx3 gene in the hypothalamus.  
(G) UMAP plots showing cell composition and distribution in control and CKO datasets. Control 
cells are labeled in purple, while CKO cells are in orange.  
(H) Stacked bar chart showing the relative ratios of control and CKO cells in each neuronal subtype. 
The red dashed line indicates when the proportion of CKO cells falls below 20%. Noteworthy, the 
neuronal subtypes with a significant reduction in CKO groups are marked with asterisks and red 
text. We calculated the statistical significances of these difference using three softwares: scCODA, 
Cacoa, and speckle.  
(I) UMAP plots highlighting the lost neuronal subtypes in CKO groups (left) and Tbx3-derived (pT2) 
neuronal sublineage (right) in colors. Single-cell data of inferred pT2 sublineage was randomly 
under-sampled and reversely mapped onto the UMAP plot integrating control and CKO neurons. 
Lost subtypes of neurons in CKO mice are labeled in distinct colors.  
(J) UMAP plots showcasing three neuronal subtypes (AgRP, POMC and KNDy) lost in CKO groups. 



 

 

 
Figure S14: Conservative and divergent gene modules in human and mouse neuronal 
lineages, related to Figure 3. 
(A and B) Beeswarm plots showing the subdivision of hypothalamic neuronal lineage into 10 
pseudo-temporal bins (A) and 5 cell groups (B).  
(C and D) Main heatmaps depicting pairwise similarities between all NMF transcriptional programs 
in human (C) and mouse (D) neuronal lineages, ordered by hierarchical clustering. Nine meta-
programs are indicated by squares and numbers, and annotated by GO enrichment analysis.  
(E) Network graphs showing the protein interaction networks for the human-specific RNA-splicing 
gene module (left) and mouse-specific oxidative-phosphorylation gene module (right).  
(F) Violin plots showing the gene module scores of protein translation, oxidative phosphorylation 
and glycolysis across species at various developmental stages.  
(G) Feature plots showing the divergent oxidative phosphorylation score between humans and 
mice at different developmental stages. 
  



 

 

 

Figure S15: Molecular annotation of distinct neuronal subtypes, related to Figure 4. 
(A) UMAP plots and heatmap illustrating the independent clustering of human and mouse neurons 
and their inter-species conservation, respectively.  
(B) Dendrogram tree illustrating the hierarchical clustering of diverse neuronal subtypes across 
species. Glutamatergic and GABAergic neurons are distinguished by warm (red, orange, and 
yellow) and cool (green and blue) colors, respectively. Neurons from humans and mice are labeled 
in blue and red, respectively.  
(C) Heatmap plot depicting the specific marker genes for each neuronal subtype. Excitatory (En) 
and inhibitory (In) neurons are distinguished by expression of SLC17A6 and SLC32A1, respectively. 
Neurons are annotated by neurotransmitters, neuropeptides and specific TFs.  



 

 

 
Figure S16: Spatial annotation of distinct neuronal subtypes conserved between humans 
and macaques, related to Figure 4. 
(A) Schematic diagrams depicting the potential spatial distribution of distinct neuronal subtypes in 
P, A, T and M zones along the AP axis. Spatial position of most, if not all, neuronal subtypes in 
diverse hypothalamic nuclei was predicted and annotated by the expression of known spatial codes, 
neuropeptides or other canonical markers3-7. For example, TRH (En17) and AVP (En20) endocrine 
neurons were distributed in paraventricular nucleus, while POMC (En9), AgRP (In20) and KNDy 
(En25) were located in arcuate nucleus.  
(B) Independent clustering of macaque neurons.  
(C) Identification of neuronal-subtype homology between humans and macaques.  
(D) Dot plot showing the molecular signatures in each macaque neuronal subtype.  



 

 

Figure S17: Neuronal subtype-specific TFs conserved between humans and mice, related to 
Figure 4. 
Heatmaps showing the specific expression of 89 conservative TFs in each neuronal subtypes within 
both the human (left) and mouse (right) developing hypothalamus.  



 

 

Figure S18: Potential neuronal subtype-specific regulons predicted by CESNI, related to 
Figure 4. 
An overview of the cell type-specific gene regulatory networks inferred by CESNI (STAR Methods) 
in the developing hypothalamus. The color-coded nodes represent potential regulons in different 
neuronal subtypes.  



 

 

 
Figure S19: Neuron subtype-specific regulons predicted by SCENIC, related to Figure 4. 
(A) A heatmap showing the activity of 174 potential regulons for distinct neuronal subtypes in the 
hypothalamus, which were inferred by SCENIC.  



 

 

(B) Network analysis of the top 6 potential regulons for each neuronal subtype. Excitatory and 
inhibitory neurons are indicated by orange and green nodes, respectively. Pie charts for each 
regulon reflect its relative enrichment in mouse (red) and human (blue) neurons.  
(C) Sample network diagrams illustrating the potential master regulators and their effector genes 
in En7 (middle) and En18 (bottom).  
(D) A schematic summarizing the potentially critical regulons for many neuronal subtypes 
distributed in paraventricular nucleus (PVN), suprachiasmatic nucleus (SCN), LH, VMH, ARC, 
supramammillary nucleus (SUM) and mammillary body (MBO). Fx, fornix. Regulons identified by 
both CESNI and SCENIC are labeled in red. 
  



 

 

Figure S20: Identification of human-enriched neuronal subtype, related to Figure 4. 
(A and B) Heatmaps showing human and mouse neuronal-subtype homologies, denoted by the 
proportion of cells overlapping between human and integrated neurons (A), or between mouse and 
integrated neurons (B). In15 subtype does not correspond to any mouse neuronal subtypes.  
(C-E) Representative confocal images showing the species-specific prevalence of 
ONECUT1+LHX1+ In15 neurons in the human hypothalamus in comparison to mouse brains at 
different developmental time points (PCW6 and12 for humans; E12.5 and E13.5 for mice). 3V, third 
ventricle. Scale bars, 100 and 50 μm in (C) and (D); 50 and 20 μm in (E).  



 

 

(F) Immunoblotting showing the successful expression of human ONECUT1 proteins in HEK293T 
cells transfected with the plasmid pCDH-EF1α-ONECUT1-HA-T2A-EGFP. OC1, ONECUT1.  
(G) Schematic diagram illustrating the strategy for ectopic expression of human ONECUT1 in the 
embryonic mouse hypothalamus through in utero electroporation.  
(H) Confocal images and reconstruction of neurons that were transfected with either tdTomato or 
ONECUT1-T2A-EGFP in vivo. Embryos at E13.5 were electroporated with plasmids in utero and 
collected after 5 days. Scale bar, 20 μm.  
(I) Bar plots showing the process length and branch numbers in neurons (Control, n=20; ONECUT1, 
n=22). Data are shown as mean ± SEM (∗P < 0.05 by two-tailed unpaired Student’s t test). 
  



 

 

Figure S21: Conservation and diversity of hypothalamic neurons across species and sexes, 
related to Figure 4. 
(A) Heatmap showing the transcriptomic divergence of distinct neuronal subtypes between humans 
and mice, analyzed with the top 1000 (top panel) and 2000 (bottom panel) highly variable genes 
(HVGs).  
(B) Relative ratios of DEGs enriched in humans (blue) or mice (red) for each neuronal subtypes. 
(C) Scatter plot showing the two-dimensional relationship between transcriptomic divergence score 
(x axis) and DEG ratio (y axis) for each excitatory (En) and inhibitory (In) neuronal subtype.  



 

 

(D) Treemaps showing the frequency of human- or mouse-enriched TFs, including zinc finger 
proteins (ZFP), homeodomain family (Homeobx), high mobility group (HMG) and basic helix-loop-
helix factors (bHLH). The size of each box represents the number of neural subtypes with species-
specific gene enrichment.  
(E) Treemap showing the frequency of human- or mouse-enriched ligands, receptors and ion 
channels in female and male samples.  
(F) Normalized gene expression scores for ligands, receptors, channels, presynaptic and 
postsynaptic components in both human and mouse neurons across female and male samples. Ex, 
glutamatergic neurons; In, GABAergic neurons. 
 
  



 

 

 
Figure S22: Genes enriched in human hypothalamic neurons, related to Figure 4. 
(A) Ranked list of the top 100 orthologous genes that are upregulated in human neurons as 
compared with mouse neurons. Clustered protocadherin (cPCDH) genes are highlighted in red text. 
(B) Dot plot showing the divergent expression level of cPCDH gene family in human and mouse 
neurons.  
(C) Chart illustrating the subtype-specific primate-specific genes (PSGs) in human neurons. Genes 
with subtype specificity (log2FC > 0.5 and adjusted P < 0.05) are marked with red text. 
  



 

 

 
Figure S23: Molecular survey of hypothalamic neuroendocrine neurons during development, 
related to Figure 5. 
(A) Schematic diagram illustrating the spatial distribution of neuroendocrine neurons, including 
GnRH, OXT, AVP, TRH, CRH, SST and GHRH subtypes, in the mouse hypothalamus.  
(B) UMAP plot showing the subclusters of neuroendocrine neurons.  
(C) Violin plots showing the expression pattern of GNRH1, GHRH, AVP, CRH, OXT, SST, TRH, 
ISL1, SIM1, OTP and SCG2 in distinct subtypes of endocrine neurons.  



 

 

(D) Dot plot showing the marker gene expression in various endocrine neuronal subtypes.  
(E) GO functional enrichment analysis of molecular signatures for each neuroendocrine neuronal 
subtype.  
(F) Subtype-specific TFs with species conservation. NR3C1 expression emerges early in prenatal 
CRH neurons. 
  



 

 

 
Figure S24: Expression patterns of guidance cues and their receptors in hypothalamic 
neuroendocrine neurons, related to Figure 5. 
(A) Dot plot showing the relative gene expression of canonical axon guidance cues in OPC, OD, 
MG, AS and primitive tanycytes (pri-TC). NTN1, SLIT2 and EFNA5 are highly expressed in pri-TC. 
(B) Spatial visualization of Slit2, Ntn1 and Efna5 expression in the E13.5 mouse hypothalamus with 
spatial transcriptomic data.  
(C) Dot plot showing the expression of receptors for NTN1, SLIT2 and EFNA5 in neuroendocrine 
neurons.  
(D) A schematic depicting the axonal projection of neuroendocrine neurons toward hypothalamic 
median eminence. margin to the tuberal hypothalamus.  
  



 

 

 
Figure S25: Interspecies differences of GnRH and GHRH neurons, related to Figure 5. 
(A) UMAP plots showing the species difference of neuroendocrine neurons between humans and 
mice. Purple dashed lines outline the distribution of GnRH neurons.  
(B) Stacked bar plot showing the relative proportion of each neuroendocrine neuronal subtype in 
humans and mice.  
(C and D) Representative images showing the spatial dispersion of GnRH neurons in the A- and 
M-zones of human (PCW16, left) and mouse (P0, right) hypothalamus. Nascent GnRH neurons 



 

 

migrate along the ventrolateral margin to the tuberal hypothalamus. Scale bars, 500, 200 and 50 
µm (C); 500 and 50 µm (D).  
(E) Quantification of GnRH neuronal numbers in the human and mouse developing hypothalamus. 
Values represent mean ± SEM (n = 5 human and 15 mouse brain sections, ***P < 0.001 by two-
tailed unpaired Student’s t test).  
(F-I) Representative confocal images and quantification of GnRH neurons in the P7 and P14 mouse 
hypothalamus along the rostrocaudal axis. Scale bars, 200 and 75 μm.  
(J and K) Schematic diagrams and sample images demonstrating the widespread distribution of 
GHRH neurons in the T- and M-zones of the human hypothalamus compared to mice. Scale bars, 
200, 50 and 20 µm (J), and 50 µm (K). 
  



 

 

 
Figure S26: Molecular survey of hypothalamic dopamine neurons during development, 
related to Figure 5. 
(A) Serial images showing the distribution pattern of TH-expressing neurons in the mouse 
hypothalamus at P0. Scale bars, 500 µm.  



 

 

(B) Expression of TH, DDC and SLC18A2 in the hypothalamic neurons.  
(C) UMAP plots showing the overlap of TH expression with either SLC17A6 or SLC32A1, 
suggesting the potential coupling between dopamine and glutamate or GABA transmitter.  
(D) Co-labeling of TH with neurotransmitter transporters in the P0 mouse hypothalamus. Slc17a6 
and Slc32a1 were detected by HCR-based in situ hybridization. Scale bars, 10 µm.  
(E) Heatmap showing the divergent transcriptional features between GABAergic and glutamatergic 
TH-expressing neurons.  
(F) Stacked bar plots showing the relative ratio of GABAergic and glutamatergic TH-expressing 
neurons in the human and mouse hypothalamus. Dopamine-glutamate coupling is more abundant 
in humans than in mice, regardless of data collection methods (M1 or M2) or batches (B1 or B2). 
(G) Subclustering analysis of TH-expressing neurons in the hypothalamus.  
(H) Heatmap showing the subtype-specific expression of distinct TFs among TH-expressing 
neurons.  
(I) Pearson correlation analysis of diverse human and mouse dopamine neuronal subtypes.  
(J) Heatmap showing the molecular signatures of each hypothalamic dopamine and dopamine-like 
neuron. 
  



 

 

 
Figure S27: Hypothalamic dopamine neurons transcriptionally diverge from midbrain 
dopamine neurons, related to Figure 5. 
(A) Anatomic location of hypothalamus and midbrain in the human brains.  
(B) Volcano plot showing the genes that are differentially expressed in the hypothalamic and 
midbrain dopamine (DA) neurons8. Genes with significant differences (log2FC > 0.5 and adjusted 
P value < 0.05) are highlighted in colors.  
(C) GO functional enrichment analysis of molecular signatures in both hypothalamic and midbrain 
DA neurons. Hypothalamic dopamine neurons show intricate links with metabolism, endocrine 
regulation, social behavior and forebrain development.  
(D) GWAS disease and trait association of TH-expressing neurons in the hypothalamus.  
(E) Pearson correlation between midbrain and hypothalamic DA neurons, suggesting a potential 
transcriptional similarity between the D4 subtype and midbrain DA neurons.  



 

 

(F) Costaining of TH and BARHL1 in the human D4 neuronal subtype at PCW16. Scale bar, 10 µm. 
(G) Volcano plot showing the genes differentially expressed in the D4 subtype and midbrain DA 
neurons. The marker genes of midbrain DA neurons, EN1 and EN2, are denoted in red.  
(H) Violin diagram illustrating the enriched expression of EN1, EN2, FOXA1 and FOXA2 in midbrain 
DA neurons, while NR4A2 expression is shared between D4 subtype and midbrain DA neurons.  
(I) Immunostaining showing the co-expression of TH and AVP in the adult human PVN and 
supraoptic nucleus (SON). Scale bars, 50 µm. 
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